冷凍電鏡技術解析結構的一般流程是怎樣的?對樣品的要求是什么?冷凍電鏡解析蛋白結構一般流程為:蛋白表達純化;負染樣品準備:約2小時完成;負染樣品的數據收集:約8小時完成;冷凍樣品的準備:約4小時完成;冷凍樣品的數據收集:48-120小時完成。三維結構重建。冷凍電鏡解析蛋白結構對蛋白質的要求:分子量:一般需要樣品的分子量在200kD以上。緩沖液:緩沖液中不能含有多糖,DMSO,甘油等有機物質,這些會降低樣品的襯度,難以獲得高分辨的三維結構。一般而言,緩沖液為20mMHepes,150mMNaCl。濃度:一般而言,可溶性蛋白濃度應在1mg/ml左右,膜蛋白應保證濃度在5mg/ml左右。體積:20ul足夠(前提是需要蛋白濃度達標,做一個樣品3ul左右)。均一性:分子篩行為表現為單一的峰,均一性大于90%。冷凍電鏡技術之冷凍透射電鏡優點:加速電壓高,電子能穿透厚樣品。東莞冷凍電子顯微鏡技術方案
冷凍電鏡技術也正在成為助力醫藥研發的有力手段。依托對蛋白質結構的理解,科學家正在開發更有效的治Ca藥、打菌素、止痛藥、麻醉劑等。中國過去10多年里,建成了世界上較大的冷凍電鏡設施。中國的科學家,也在冷凍電鏡領域取得了很多舉世矚目的成就,引起了世界的普遍關注。比如清華大學的施一公團隊,對老年癡呆癥相關的重要蛋白質結構進行了解析,對于我們理解它的發病機理甚至開發重要治療方法有重要意義。他們對剪接體復合體一系列結構的研究幫助我們理解細胞的演化、細胞的基因調控和其他一些相關疾病有著重要意義。2019年,中國科學家利用冷凍電鏡技術解析到世界上目前分辨率較高的豬瘟病毒結構,這對我們了解該病毒的發病機理,以及如何更好開發疫苗具有重要意義。徐州冷凍電鏡技術應用冷凍電鏡技術使生物分子成像,變得更加簡單,把生物化學帶入了一個新紀元。
冷凍電鏡技術的儀器結構:(1)圖像記錄系統:收集來自樣品的電子信號,在熒光屏上形成圖像。(2)電子槍:產生電子束的部分,聚光鏡系統負責將電子束聚焦到樣本樣品上。(3)圖像生成系統:由物鏡,中間和投影儀鏡頭以及可移動平臺組成。冷凍電鏡已經能解析出生物大分子的原子級分辨率(0.2-0.3nm)結構,但是這一結果離物理極限還有較大距離。長久以來,冷凍電鏡在結構生物學領域取得了巨大成功,目前,多構象蛋白的三維分類問題和生物大分子的動力學分析依然是充滿挑戰的研究方向,新型的算法發展也將主要圍繞這些問題展開。而作為一種低信號源激發測試技術,冷凍電鏡技術在一些對電子束、熱敏感材料,如鈣鈦礦材料、某些高分子材料、水凝膠、量子點等精細結構的物理表征與機理研究中也具有巨大的應用潛力。他山之石,可以攻玉。隨著硬件設備與模擬算法的改進,這項帶著結構生物化學研究邁入新紀元的技術,未來必定擁有更加廣闊的應用前景。
冷凍電子顯微鏡技術步驟之樣品制備:用于冷凍電鏡研究的生物樣品必須非常純凈。生物樣品是在高真空的條件下成像的,所以樣品的制備既要能夠保持本身的結構又能抗脫水、電子輻射?,F在普遍采用的方法是通過快速冷凍使含水樣品中的水處于玻璃態,也就是在親水的支持膜上將含水樣品包埋在一層較樣品略高的薄冰內。冰的結構多種多樣,包括六角形冰、立方體冰等,其物理狀態與冷凍速率有關。若要形成玻璃態(即無定形態)的冰,需要冷凍速率達到每秒鐘104攝氏度。此時,冰的結構呈現各向同性,不會因成像角度不同而導致圖像產生偏差。該方法有兩個步驟:一是將樣品在載網上形成一薄層水膜:二是將第步獲得的含水薄膜樣品快速冷凍。在多數情況下,用手工將載網迅速浸入液氮內可使水冷凍成為玻璃態。其優點在于將樣品保持在接近生活狀態,不會因脫水而變形,同時可以減少輻射損傷。冷凍電鏡技術的基本原理是將生物大分子溶液置于電鏡載網上形成一層非常薄的水膜。
低溫冷凍透射電鏡技術的特點:相對于常溫透射電鏡,低溫透射電鏡的優勢有:①快速冷凍制樣技術將樣品固定在玻璃態的冰層中,避免了水或溶劑結晶對樣品結構的破壞,能夠保持液相中有機分子自組裝體和化學反應中間體的微觀結構,避免了樣品干燥引起的結構變化;②高分子及化學反應體系常常具有非平衡態結構,快速冷凍制樣技術能夠保持住非平衡態結構,進而得以觀察;③低溫條件能夠盡可能保持有機和高分子等軟物質材料的微觀結構,明顯減少電子束對樣品的損傷。冷凍電鏡技術能夠揭示生物分子細節。荊州透射電子顯微鏡技術特點
冷凍電鏡“分辨率改變”使其成為獲得優于3?結構的常規技術。東莞冷凍電子顯微鏡技術方案
冷凍電鏡技術總結:電子斷層成像技術則可用來研究一定厚度的亞細胞器在天然狀態下的內部結構,由于樣品厚度的限制,能看到500-1000nm左右厚度的結構,的也可以了解整個細胞不同層面的內部結構.盡管,我們能夠預言按目前電子冷凍斷層成像技術的發展會得到許多更誘人的信息。細胞內存在大量分子機器和生物大分子復合物,并且與單個超分子相比要大,更容易對其進行識別。這樣的事實使斷層技術的目標變得簡單了。在不久的將來關于細胞骨架,核孔復合體和核纖層,囊泡聚集和運輸復合物以及其他一些細胞成分的一些基本問題會得到更清晰的闡釋。這兩種方法都不需要對樣品進行結晶,快速含水冰凍的制樣過程既不復雜,又保存了樣品的瞬時天然結構,有利于對復合物的功能進行研究,圖像自動化篩選過程將是今后提高分辨率的關鍵環節。而電子晶體學則對具有對稱結構的樣品進行三維重構具有很大的優勢,比如二十面體病毒,螺旋對稱結構等,尤其適合膜蛋白的三維結構,并且是電子顯微術中目前只一能達到原子分辨率水平的方法。東莞冷凍電子顯微鏡技術方案