冷凍電鏡技術的原理:冷凍電子顯微學解析生物大分子及細胞結構的中心是透射電鏡成像,其基本過程包括樣品制備、透射電鏡成像、圖像處理及結構解析等幾個基本步驟。在透射電鏡成像中,電子槍產生的電子在高壓電場中被加速至亞光速并在高真空的顯微鏡內部運動,根據高速運動的電子在磁場中發生偏轉的原理,透射電鏡中的一系列電磁透鏡對電子進行匯聚,并對穿透樣品過程中與樣品發生相互作用的電子進行聚焦成像以及放大,Z后在記錄介質上形成樣品放大幾千倍至幾十萬倍的圖像,利用計算機對這些放大的圖像進行處理分析即可獲得樣品的精細結構。冷凍電鏡技術采用的快速冷凍技術關鍵在于“快速”。南京透射電鏡技術用途
冷凍電子顯微技術主要包括單顆粒冷凍電鏡技術和冷凍電子斷層掃描技術。單顆粒冷凍電鏡技術首先捕獲大量隨機分布的同一種生物樣品的二維圖像,然后通過圖像處理算法解析其三維結構。近年來,隨著冷凍電鏡設備和計算機軟硬件的快速發展,特別是隨著直接電子探測器在冷凍電鏡中的應用,單顆粒冷凍電鏡技術邁進了原子分辨率水平,在生物學、醫學和新藥研發等領域發揮著越來越重要的作用。冷凍電鏡通過記錄單個生物樣品在傾斜旋轉過程中投影的一系列二維圖像,采用特殊的算法計算,將二維圖像重構為三維斷層圖像。冷凍電鏡主要研究組織、細胞和微生物中的超微結構,它能夠提供生理環境下大分子復合物納米、亞納米甚至近原子尺度的原位結構信息以及其與其它大分子的相互作用信息。原位冷凍電鏡技術用途冷凍電鏡技術與X射線晶體學、核磁共振一起構成了高分辨率結構生物學研究的基礎。
冷凍電鏡技術解析結構的一般流程是怎樣的?對樣品的要求是什么?冷凍電鏡解析蛋白結構一般流程為:蛋白表達純化;負染樣品準備:約2小時完成;負染樣品的數據收集:約8小時完成;冷凍樣品的準備:約4小時完成;冷凍樣品的數據收集:48-120小時完成。三維結構重建。冷凍電鏡解析蛋白結構對蛋白質的要求:分子量:一般需要樣品的分子量在200kD以上。緩沖液:緩沖液中不能含有多糖,DMSO,甘油等有機物質,這些會降低樣品的襯度,難以獲得高分辨的三維結構。一般而言,緩沖液為20mMHepes,150mMNaCl。濃度:一般而言,可溶性蛋白濃度應在1mg/ml左右,膜蛋白應保證濃度在5mg/ml左右。體積:20ul足夠(前提是需要蛋白濃度達標,做一個樣品3ul左右)。均一性:分子篩行為表現為單一的峰,均一性大于90%。
冷凍電鏡技術未來之路在何方?除了蛋白等生物大分子外,生物樣品還有很重要的一面是細胞和組織。即使是目前有很多重要的蛋白結構都得到了埃米級別的解析,但由于它們都是純化出來的,已經脫離了原來位置,就如同一片樹葉脫離了大樹,研究的再深刻,目前也只是一葉遮目,不要說推測這片樹葉在森林里的位置,即使是在哪顆特定大樹上的生長部位和結構都很難說。因此解析細胞或組織這樣大尺度的高分辨精細結構具有更普遍的生物學意義。冷凍電鏡技術將生物分子進行冷凍便可進行高分辨率成像,還具有分辨率高等優勢。
冷凍電子顯微技術學解析生物大分子及細胞結構的中心是透射電子顯微鏡成像,包括樣品制備、圖像采集、圖像處理及三維重構等幾個基本步驟。三維重構:數據處理的較終目的是為了獲得生物樣品的三維質量密度圖,由二維圖像推知三維結構的方法即三維重構。其理論原理是在1968年由DeRosier和Klug提出的中心截面定理:一個函數沿某方向投影函數的傅里葉變換等于此函數的傅里葉變換通過原點且垂直于此投影方向的截面函數。由于樣品性質的不同,圖像分析的方法也有差異。冷凍電鏡技術的基本原理是將生物大分子溶液置于電鏡載網上形成一層非常薄的水膜。南通冷凍電鏡技術服務電話
冷凍電鏡技術能夠揭示生物分子細節。南京透射電鏡技術用途
冷凍電鏡技術,是用于掃描電鏡的很低溫冷凍制樣及傳輸技術(Cryo-SEM),可實現直接觀察液體、半液體及對電子束敏感的樣品,如生物、高分子材料等。電鏡觀察:樣品經過很低溫冷凍、斷裂、鍍膜制樣(噴金/噴碳)等處理后,通過冷凍傳輸系統放入電鏡內的冷臺(溫度可至-185℃)即可進行觀察。其中,快速冷凍技術可使水在低溫狀態下呈玻璃態,減少冰晶的產生,從而不影響樣品本身結構,冷凍傳輸系統保證在低溫狀態下對樣品進行電鏡觀察。南京透射電鏡技術用途