約翰內斯堡(Johannesburg)工藝,本工藝源自南非約翰內斯堡,為UCT變型工藝,該工藝的主要目的是盡量減少污泥回流中的硝氮進入厭氧池,提高較低進水濃度廢水德爾處理效率(其實脫氮工藝就是碳源的合理分配問題,在不考慮反硝化除磷的情況下,低COD廢水,除磷量越多,反硝化脫氮越差,關鍵是看操作人員如何取舍)。回流活性污泥直接進入缺氧池,該池有足夠的停留時間利用內源呼吸去還原污泥中攜帶的硝氮,然后再進入厭氧區進行釋磷反應。(題外話,這個工藝在有些資料上給歸為JHB工藝,我認為知道工藝的原理就行,有些問題沒必要去糾結。)氮氧化物排放量較大的行業需要重視脫氮工作。一級A脫氮供應商
同步硝化反硝化,存在有氧情況下的反硝化反應和低氧情況下的硝化反應,硝化過程和反硝化過程通常在一個反應器中進行,這種現象被稱為同步硝化反硝化,如流化床反應器、生物轉盤、氧化溝等。短程硝化反硝化與全程硝化反硝化相比,可減少25%的硝化需氧量和40%的反硝化碳源,同時可削減底泥產量,進而減少反硝化池容積,在各類脫氮工藝中極具競爭力。此外,亞硝態氮的積累不會抑制氨氧化過程。厭氧氨氧化,在厭氧條件下,微生物直接以NH4+為電子供體,以亞硝酸鹽、硝酸鹽作為電子受體,將氮化合物轉變成N2的過程或利用硝酸鹽作為電子受體來氧化氨的過程。地表四類脫氮廠家環保部門正在大力推廣先進的脫氮技術,以應對日益嚴重的水體污染問題。
傳統生物脫氮,傳統的生物脫氮技術始于上世紀30年代,真正應用于20世紀70年代。自Barth三段生物脫氮工藝的開創,A/O工藝、序批式工藝等脫氮工藝相繼被提出并應用于工程實際。三段生物脫氮工藝,三段生物脫氮工藝流程如圖所示,該工藝是將有機物降解、硝化作用以及反硝化作用三個階段單獨開來,每一階段后面都有各自單獨的沉淀池和污泥回流系統。頭一段曝氣池的主要作用是代謝分解有機物,并使有機氮氨化。第二段硝化池主要進行硝化反應,將氨氮氧化,同時需投加堿度以維持一定的pH值。第三段是反硝化反應器,硝態氮在缺氧條件下被還原為N2,安裝攪拌裝置使污泥混合液呈懸碳源以滿足浮狀態,并外加反硝化反應所需的碳源。
生物脫氮的基本條件:1)硝酸鹽:硝酸鹽的生成和存在是反硝化作用發生的先決條件,必須先將污水中的含氮有機物如蛋白質、氨基酸、尿素、脂類、硝基化合物等轉化為硝酸鹽氮。2)不含溶解氧:反應器中的氧都將被有機體優先利用,從而減少反應器能脫氮的亞硝酸鹽量,溶解氧超過0.2mg/L時沒有明顯脫氮作用。3)兼性菌團:多數情況下,細菌普遍具有脫氮習性,污水處理的微生物脫氮時在好氧和缺氧條件下反復交替,其中以兼性菌團為主。4)電子供體:生物脫氮的能量來自脫氮過程中起電子供體作用的碳質有機物,脫氮時污水中有機物必須充足,否則需要投加甲醇、乙醇、乙酸等外部碳源。脫氮裝備包括脫氮設備、控制系統、管道閥門等設施。
處理工業廢水內的氨氮污染物,只有生物法和其它(吹脫法、化學沉淀法、離子交換法等),而生物法的優點是:可去除多種含氮化合物,對氨氮可以徹底降解,總氨氮去除率可達95%以上,二次污染小且運行費用低。生物法脫氮的原理是以脫氮微生物的生物活性作為脫氮主體,需要在各種脫氮微生物的共同作用下,通過硝化、反硝化等反應,將氨氮廢水中的氨氮轉化為二氧化碳、氮氣和水。生物法處理氨氮廢水的方法較多,處理過程復雜,控制難點多,比較常見的方法有傳統硝化反硝化、同步硝化反硝化、短程硝化反硝化、厭氧氨氧化、A/O、A2/O、氧化溝和SBR。脫氮技術在工業生產中起到重要作用。一級A脫氮供應商
脫氮的效果和效率會受到天氣、水溫和pH值等影響。一級A脫氮供應商
pH值:硝化反應的較佳pH值范圍是6.5一7.5,不適宜的pH值會影響反硝化菌的生長速率和反硝化酶的活性。當pH值低于6.0或高于8.5時,反硝化反應將受到強烈抑制。反硝化反應會產生部分堿度,這有助于將pH值保持在所需要的范圍內,并補充硝化過程中所消耗的一部分堿度。此外,pH值還影響反硝化的較終產物,pH值>7.3時較終產物是氮氣,pH值<7.3時較終產物是N2O。有毒物質:鎳濃度大于0.5mg/L,亞硝酸鹽氮含量超過30mg/L或鹽度高于0.63%時都會抑制反硝化作用。硫酸鹽含量過高會導致反硫化的進行,進而影響反硝化的正常進行,鈣和氨的濃度過高也會抑制反硝化作用。一級A脫氮供應商