積分球輻射度,入射到漫射表面上的光通過反射產生一個虛擬光源。從表面發出的光較好用它的輻射度來描述,即每單位立體角的通量密度。輻射度是一個重要的工程量,因為它可以預測光學系統在觀察被照射表面時所能收集到的光通量的數量。對于積分球,輻射度推導考慮了入射到積分球內的光、積分球壁反射率、積分球表面積、光進行的多次表面反射以及通過開口端口的損失。進入積分球體的光通過初始反射幾乎完全漫射。離開表面的一小部分光到達另一個表面區域并被漫反射,依此類推。積分球的反射性能直接影響到光學測量的結果。色溫可調輻射定標焦平面陣列
較常見的積分球結構測色儀器為d/8結構,也有d/0結構。關于d/8結構測色儀,有兩種丈量模式SCI和SCE;采用SCI丈量色彩能夠有用的消除去物體外表紋路對色彩丈量的影響,進而取得物體的真實色彩特征。積分球作為一種測量旋轉角速度和加速度的儀器,具有精度高、操作簡便等優點,在導航、航天、機器人、運動追蹤、虛擬現實、游戲控制和運動醫學等領域有普遍的應用前景。隨著技術的發展,積分球的應用將會越來越普遍。以上就是積分球的原理和典型應用的簡要介紹。光譜通用太陽光模擬器測試積分球是一個內壁涂有白色漫反射材料的空腔球體,又稱光度球,光通球等。
高精度智能化可見/近紅外積分球輻射定標裝置是用于航空相機和光學遙感儀器地面輻射定標的重要設備。由于在光譜輻射定標過程中,被測光學儀器透射或反射特性的不均勻造成測量光束內光能分布不均勻,但經過與積分球內探測器結合后,積分球多次漫射后可均勻化。因此,該定標設備不但可以實現可見/近紅外工作波段內的光學儀器輻射定標,且在光學儀器定標過程中無人為干擾,可以獲得更高精度的輻射定標結果,還可以實現對積分球出射口的亮度值的智能化自動調節。
積分:1.理想積分球原理,理想積分球的條件:A、積分球地內表面為一完整地幾何球面,半徑處處相等;B、球內壁是中性均勻漫射面,對于各種波長的入射光線具有相同的漫反射比;C、球內沒有任何物體,光源也看作只發光而沒有實物的抽象光源。2.影響積分球測量精度的因素:A、球內壁是均勻的理想漫射層,服從朗伯定則;B、球內壁各點的反射率相等;C、球內壁白色涂層的漫射是中性的;D、球半徑處處相等,球內除燈外無其他物體存在;E、窗口材料是中性的,其E符合照度的余弦定則,實際情況與理想條件不符合會帶來測量誤差,故需修正。積分球結構簡單,但其在光學測量中的作用卻不可小覷。
積分球輻射源是一種非常優異的定標光源,其輸出的輻亮度面均勻性和穩定性是普通光源無法比擬的。在需要使用面光源的領域,被普遍用于光學探測器的實驗室定標,空間光學遙感儀器發射前的地面輻射定標。因此輻射源的穩定性、準確性對于輻射定標非常關鍵,直接影響到被定標儀器探測結果。影響積分球輻射源輸出穩定性和均勻性的主要因素包括積分球光源供電的恒流源穩定性、積分球內部材料的反射率穩定性和球內擋板設置,三者會影響積分球輸出光通量、輻亮度變化和均勻性。積分球還可以用于光學實驗中的光傳輸研究,通過觀察球內的光分布,可以研究光的傳播規律。低亮度積分球模塊化設計
積分球的直徑可以根據需要進行調整,常見的直徑有10厘米、20厘米等。色溫可調輻射定標焦平面陣列
這種輻射度交換一次又一次地發生,直到它在空間上整合。入射到整個積分球體表面的總通量的n次反射的交換可以用冪級數來建模,并簡化為一個簡單的輻射方程:式中Φ為入射到積分球內的光,As為積分球壁面積,p為積分球壁反射率,f為開口端口面積占比。簡化的輻射度方程可用于模擬光和LED測量應用的光學效率。這些應用包括用于激光表征的光學衰減,進入光纖或安裝在積分球體上的探測器表面的通量,用于圖像傳感器的光譜輻射度和用于非成像光學傳感傳感器的光譜輻照度,或積分球體應用所需的其他許多輻射和光度參數。色溫可調輻射定標焦平面陣列