天然氣制氫新工藝和新技術分析:天然氣絕熱轉化制氫。該技術突出的特色是大部分原料反應本質為部分氧化反應,控速步驟已成為快速部分氧化反應,較大幅度地提高了天然氣制氫裝置的生產能力。天然氣絕熱轉化制氨工藝采用廉價的空氣做氧源,設計的含有氧分布器的反應器可解決催化劑床層熱點問題及能量的合理分配,催化材料的反應穩定性也因床層熱點降低而得到較大提高天然氣絕熱轉化制氫在加氨站小規模現場制氫更能體現其生產能力強的特點。該新工藝具有流程短和操作單元簡單的優點,可明顯降低小規模現場制氨裝置投資和制氨成本制氫設備需要精確控制溫度和壓力,以確保反應的順利進行和氫氣的純度。西藏天然氣天然氣制氫設備
催化劑的保護1、在任何情況下,催化劑層溫度禁止超過300℃。2、還原后的催化劑禁止與氧氣或空氣接觸。3、催化劑使用中應盡量避免中途停車。每停一次車,盡管采取了鈍化或氮氣保護操作,還是會影響催化劑使用壽命。4、催化劑的升溫和降溫都必須緩慢進行,禁止急速升溫和降溫。5、在滿足生產能力、產率的前提下,催化劑應在低溫下操作,有利于延長催化劑使用壽命。6、禁止含硫、磷、鹵素元素等有毒物質混入系統,以免造成催化劑中毒。7、對裝置使用的原料甲醇、脫鹽水、氮氣、氫氣等必須符合要求,嚴格規范檢測程序。8、如發現有異常特別是反應系統異常,應立即停車分析檢查,排除后再開車。加工天然氣制氫設備排名天然氣制氫設備的應用領域包括燃料電池、交通運輸等多個領域,為實現能源轉型和碳減排做出了重要貢獻。
天然氣水蒸氣重整在合成氨工業中應用十分,但在加氫站規模,天然氣水蒸氣重整和變壓吸附(PSA)分離凈化氫氣的整套裝置投資以及制氫成本都會大幅度增加。天然氣的自熱重整,部分氧化重整的共同特點是系統中需要有制純氫的設備,并且產品氣是CO、CO2和H2的混合氣,仍需經過變換反應和氫氣的分離過程。因此,現有的天然氣水蒸氣重整制氫和常規的深冷分離或變壓吸附分離凈化氫技術,不是很適于加氫站對小規模制氫裝置的需求,研究開發制氫新工藝,縮短流程,簡化操作單元,可以減少小規模現場制氫裝置投資和制氫成本。
天然氣的主要加工過程包括常減壓蒸餾、催化裂化、催化重整和芳烴生產。同時,包括天然氣開采、集輸和凈化。在一定的壓力和一定的高溫及催化劑作用下,天然氣中烷烴和水蒸氣發生化學反應。轉化氣經過費鍋換熱、進入變換爐使CO變換成H2和CO2。再經過換熱、冷凝、汽水分離,通過程序控制將氣體依序通過裝有三種特定吸附劑的吸附塔,由變壓吸附(PSA)升壓吸附N2、CO、CH4、CO2提取產品氫氣。降壓解析放出雜質并使吸附劑得到再生.反應式:CH4+H2O→CO+3H2-QCO+H2O→CO2+H2+Q。天然氣制氫設備在生產過程中產生的廢氣、廢水等污染物較少,符合環保要求,為綠色能源的發展做出了貢獻。
蒸汽轉化和變換原理原料天然氣和蒸汽在轉化爐管中的高溫催化劑上發生烴-蒸汽轉化反應,主要反應如下CHa+H,O=CO+3Hz-Q(1)一氧化碳產氫CO+HO=CO+Hz+Q(2)前一反應需大量吸熱,高溫有利于反應進行:后一反應是微放熱反應,高溫不利于反應進行。因此在轉化爐中反應是不完全的。在發生上述反應的同時還伴有一系列復雜的付反應。包括烴類的熱裂解,催化裂解,水合,蒸汽裂解,脫氫,加氫,積碳,氧化等。在轉化反應中,要使轉換率高,殘余甲烷少,氫純度高,反應溫度要高,但要考慮設備承受能力和能耗,所以爐溫不宜太高。為緩和積碳,增加收率,要控制較大的水碳比。天然氣制氫設備的發展還需要進一步的技術創新和市場推廣,以提高其生產效率和降低生產成本。西藏天然氣天然氣制氫設備
制氫設備在生產過程中會產生大量的熱量,因此需要配備冷卻系統以控制溫度。西藏天然氣天然氣制氫設備
高溫裂解制氫技術●天然氣高溫裂解制氫是天然氣經高溫催化分解為氫和碳該過程由于不產生二氧化碳,被認為是連接化石燃料和可再生能源之間的過渡工藝過程。
自熱重整制氫●這個工藝流程轉變了由外部供熱到內部自己提供熱源,對能源利用比較合理,這個過程主要是在反應產生的熱量能夠被其他反應需要熱量所利用,實現自身供熱。這個技術的工作原理就是在反應器中耦合了一些熱量,這些熱量主要是天然氣燃燒反應所產生,同時還可以天然氣水蒸氣進行反應,能夠實現反應的自供熱。 西藏天然氣天然氣制氫設備