在通常的工業變壓吸附過程中,由于吸附-解吸循環的周期短(一般只有數分鐘),吸附熱來不及散失,恰好可供解吸之用,所以吸附熱和解吸熱引起的吸附床溫度變化一般不大,吸附過程可近似看做等溫過程,其特性基本符合Langmuir吸附等溫方程在實際應用中,一般依據氣源的組成、壓力及產品要求的不同來選擇PSATSA或PSA+TSA工藝變溫吸附(TSA)法的循環周期長,但再生徹底,通長用于微量雜質或難解吸雜質的脫除變壓吸附(PSA)法的循環周期短,吸附劑利用率高,吸附劑用量相對較少不需要外加換熱設備,被用于大氣量多組分氣體的分離與純化變壓吸附提氫吸附劑的制備方法多樣,可以通過改變吸附劑的成分、結構和處理條件等方式來調控其吸附性能。湖北高科技變壓吸附提氫吸附劑
變壓吸附(PSA)工序采用5-1-3PSA工藝,即裝置有5個吸附塔組成,其中-個吸附塔始終處于進料吸附狀態,其工藝過程由吸附、三次均壓降壓、順放、逆放、沖洗、三次均壓升壓和產品升壓等步驟組成,具體工藝如下經過預處理后的焦爐煤氣自塔底進入吸附塔中正處于吸附工況的吸附塔,在吸附劑選擇吸附的條件下,一次性出去氫以外的絕大部分雜質,獲得純度大于99.9%的粗氫氣,從塔頂排出送凈化工序當被吸附雜質的傳質區前沿(成為吸附前沿)到達床層出口預留段某一位置時,停止吸附,轉入再生過程。安徽催化燃燒變壓吸附提氫吸附劑這種吸附劑可以在不同壓力和溫度下實現氫氣的選擇性吸附。
我們現在主要使用的吸附劑有變壓吸附硅膠、、高效 Cu 系吸附劑(PU-1)、基制氧吸附劑(PU-8)等。其中山東辛化生產的變壓吸附硅膠是針對變壓吸附氣體分離技術開、研究的脫炭、提純吸附劑。第三代 (SIN-03)同過特殊的吸附劑生產工藝,控制吸附劑的孔徑分布及孔容,改變吸附劑的表面物理化學性質,使其具有吸附容量大,吸附、脫炭速度快,吸附選擇性強,分離系數高,使用壽命長等特點。從空氣中分離出富氧,該過程經過改進,于 60 年代投入了工業生產。80 年代,變壓吸附技術的工業應用取得了突破性的進展,主要應用在氧氮分離、空氣干燥與凈化以及氫氣凈化等。其中,氧氮分離的技術進展是把新型吸附劑碳分子篩與變壓吸附結合起來,將空氣中的 O2 和 N2 加以分離,從而獲得氮氣。隨著分子篩性能改進和質量提高,以及變壓吸附工藝的不斷改進,使產品純度和回收率不斷提高,這又促使變壓吸附在經濟上立足和工業化的實現。
甲醇制氫工藝包括氣相重整法和液相法。甲醇氣相重整制氫與乙醇重整制氫和烴類制氫工藝相比,具有反應溫度低(200~300℃)及氫提純步驟少的優點,液相法是近些年研究的新方向,目前處于實驗室研究階段,未實現工業化。甲醇裂解制氫甲醇裂解反應方程式為:CH3OH?CO+2H2。該反應為合成氣制甲醇的逆反應,是吸熱反應。該反應動力學的研究目前已經有很多的報導,目前研究的重點是新型高活性、選擇性和穩定性催化劑的研制。甲醇裂解催化劑包括傳統的Cu/ZnO催化劑、Cr-Zn催化體系、貴金屬催化劑、CuCl-KCl/SiO2催化劑、分子篩和均相催化劑。但該工藝產物混合其中含有的一氧化碳含量較高,后續分離裝置復雜。變壓吸附提氫吸附劑可以通過改變吸附劑的表面性質來調節氫氣的吸附性能。
天然氣制氫工藝的改進通過對轉化爐、熱量回收系統等進行改造可以實現成本節約、降低對天然氣原料的消耗,這種技術通過對原料的消耗,這種技術通過對天然氣加氫脫硫和在轉化爐中放置適量的特殊催化劑進行裂解重整,生成二氧化碳、氫氣和一氧化碳的轉化氣,之后再進行熱量回收,經一氧化碳變換降低轉化氣中一氧化碳的含量、再通過PSA變壓吸附提純就可以得到純凈的氫氣。天然氣制氫裝置中氫氣提純工藝主要是在適當條件下,將硅膠、活性炭、氧化鋁等組成吸附床,并用吸附床將變換氣中各雜質組分在適當的壓力條件下進行吸附,不易被吸附的氫氣就從吸附塔的出口輸出,從而實現氫氣的提純。這種吸附劑可以在不同氣體壓力下實現氫氣的選擇性吸附。浙江小型變壓吸附提氫吸附劑
采用變壓吸附技術可以有效地控制吸附劑的吸附/解吸過程,從而實現高效的氫氣儲存和釋放。湖北高科技變壓吸附提氫吸附劑
:氫能已成為未來能源發展的重要方向之一,被視為是實現碳達峰、碳中和的必由之路。目前氫氣的主要來源以天然氣和煤等化石燃料為主,生產過程仍要排放大量二氧化碳。電解水所產氫氣被視為“綠氫”,被認為是氫氣生產的方向,但目前“綠氫”成本遠遠高于化石燃料制氫。通過分析堿性電解槽(AWE)和質子交換膜電解槽(PEM)兩種主流電解技術的制氫成本,發現氫氣成本主要由設備折舊和電力成本兩部分組成。由此降本措施主要是降低這兩部分的成本,包括降低電價以降低電力成本,增加電解槽工作時間生產更多氫氣以攤薄折舊和其他固定成本,以及通過技術進步和規模化生產降低電解槽尤其是PEM電解槽的設備成本等。湖北高科技變壓吸附提氫吸附劑