微納加工是指制造特征尺寸以納米為單位的結構,尤其是側面小于20納米的結構。目前的技術大多只允許在二維意義上進行微納加工。納加工通常用于制造計算機芯片,傳統的光刻技術是計算機行業的支柱,可用于創建尺寸小于22m的特征,雖然這是非常昂貴的,而目且目前還不被認為是經濟有效的。廣東省科學院半導體研究所微納加工平臺,面向半導體光電子器件、功率電子器件、MEMS、生物芯片等前沿領域,致力于打造高級的公益性、開放性、支撐性樞紐中心。平臺擁有半導體制備工藝所需的整套儀器設備,建立了一條實驗室研發線和一條中試線,加工尺寸覆蓋2-6英寸(部分8英寸),同時形成了一支與硬件有機結合的專業人才隊伍。平...
微納加工大致可以分為“自上而下”和“自下而上”兩類。“自上而下”是從宏觀對象出發,以光刻工藝為基礎,對材料或原料進行加工,小結果尺寸和精度通常由光刻或刻蝕環節的分辨力決定。“自下而上”技術則是從微觀世界出發,通過控制原子、分子和其他納米對象的相互作用力將各種單元構建在一起,形成微納結構與器件。基于光刻工藝的微納加工技術主要包含以下過程:掩模(mask)制備、圖形形成及轉移(涂膠、曝光、顯影)、薄膜沉積、刻蝕、外延生長、氧化和摻雜等。在基片表面涂覆一層某種光敏介質的薄膜(抗蝕膠),曝光系統把掩模板的圖形投射在(抗蝕膠)薄膜上,光(光子)的曝光過程是通過光化學作用使抗蝕膠發生光化學作用...
在過去的二十年中,微機電系統、微系統、微機械及其子領域,微流體學片上實驗室,光學MEMS、RFMEMS、PowerMEMS、BioMEMS及其擴展到納米級(例如,用于納米機電系統的NEMS)已經重新使用,調整或擴展了微制造方法。平板顯示器和太陽能電池也正在使用類似的技術。各種設備的小型化在科學與工程的許多領域提出了挑戰:物理、化學、材料科學、計算機科學、超精密工程、制造工藝和設備設計。它也引起了各種各樣的跨學科研究。微納加工的主要概念和原理是微光刻、摻雜、薄膜、蝕刻、粘接和拋光。微納加工包括光刻、磁控濺射、電子束蒸鍍、濕法腐蝕、干法腐蝕、表面形貌測量等。鄂州微納加工器件封裝 ...
微納加工技術是先進制造的重要組成部分,是衡量國家高質量的制造業水平的標志之一,具有多學科交叉性和制造要素極端性的特點,在推動科技進步、促進產業發展、拉動科技進步、保障**安全等方面都發揮著關鍵作用。微納加工技術的基本手段包括微納加工方法與材料科學方法兩種。很顯然,微納加工技術與微電子工藝技術有密切關系。微納加工大致可以分為“自上而下”和“自下而上”兩類。“自上而下”是從宏觀對象出發,以光刻工藝為基礎,對材料或原料進行加工,小結果尺寸和精度通常由光刻或刻蝕環節的分辨力決定。“自下而上”技術則是從微觀世界出發,通過控制原子、分子和其他納米對象的相互作用力將各種單元構建在一起,形成微納結構與器件。濕...
納秒和飛秒之間,皮秒激光微納加工應用獨具優勢!與傳統的微納加工技術相比,激光微納加工具有如下獨特的優點:非接觸加工不損壞工具、能量可調、加工方式靈活、可實現柔性加工等。其中全固態皮秒激光具有極窄的脈沖寬度(皮秒)、極高的峰值功率(兆瓦)以及優異的光束質量,被廣泛應用于各種金屬、非金屬材料的精密加工。研究表明,脈沖寬度高于10ps的皮秒激光加工過程中有明顯的熱效應存在,而且隨著激光與材料作用時間的增加,工件表面會產生微裂紋以及再鑄層;脈沖寬度低于5ps的皮秒激光與材料作用時會產生非線性效應,這對金屬材料的加工非常不利。因此,適合微納精密加工用的皮秒激光的脈沖寬度在5~10ps之間。為了提高加工效...
微納加工技術具有高精度、科技含量高、產品附加值高等特點,能突顯一個國家工業發展水平,在推動科技進步、促進產業發展、提升生活品質等方面都發揮著重要作用。廣東省科學院半導體研究所微納加工平臺,是國內少數擁有完整半導體工藝鏈的研究平臺之一,可進行鍍膜、光刻、刻蝕等工藝,加工尺寸覆蓋2-6英寸。微納加工平臺將面向國內外科研機構和企業提供全方面的開放服務,對半導體材料與器件的深入研發給予全方面支持,能夠為廣大科研單位和企業提供高質量檔次服務。微納加工平臺,主要是兩個方面:微納加工、微納檢測。漳州MENS微納加工 微納加工是指制造特征尺寸以納米為單位的結構,尤其是側面小于20納...
高精度的微細結構可以通過電子束直寫或激光直寫制作,這類光刻技術,像“寫字”一樣,通過控制聚焦電子束(光束)移動書寫圖案進行曝光,具有很高的曝光精度,但這兩種方法制作效率極低,尤其在大面積制作方面捉襟見肘,目前直寫光刻技術適用于小面積的微納結構制作。近年來,三維浮雕微納結構的需求越來越大,如閃耀光柵、菲涅爾透鏡、多臺階微光學元件等。據悉,蘋果公司新上市的手機產品中人臉識別模塊就采用了多臺階微光學元件,以及當下如火如荼的無人駕駛技術中激光雷達光學系統也用到了復雜的微光學元件。這類精密的微納結構光學元件需采用灰度光刻技術進行制作。直寫技術,通過在光束移動過程中進行相應的曝光能量調節,可以...
在微納加工過程中,薄膜的形成方法主要為物理沉積、化學沉積和混合方法沉積。蒸發沉積(熱蒸發、電子束蒸發)和濺射沉積是典型的物理方法,主要用于沉積金屬單質薄膜、合金薄膜、化合物等。熱蒸發是在高真空下,利用電阻加熱至材料的熔化溫度,使其蒸發至基底表面形成薄膜,而電子束蒸發為使用電子束加熱;磁控濺射在高真空,在電場的作用下,Ar氣被電離為Ar離子高能量轟擊靶材,使靶材發生濺射并沉積于基底;磁控濺射方法沉積的薄膜純度高、致密性好,熱蒸發主要用于沉積低熔點金屬薄膜或者厚膜;化學氣相沉積(CVD)是典型的化學方法而等離子體增強化學氣相沉積(PECVD)是物理與化學相結合的混合方法,CVD和PEC...
微納加工可以滿足高精度三維結構制備、多材料微納結構加工以及器件成型與集成的加工需求,因此,在各類微納結構化功能部件的研制中展現出了很大的技術優勢。目前,飛秒激光已經廣泛應用于多個前沿科學領域。利用飛秒激光可以制備各種微光學器件,如微透鏡陣列、仿生復眼、光波導和超表面等。吉林大學研究團隊利用雙光子聚合技術制備了一種基于仿生蛋白質的微透鏡,該透鏡在外界刺激下可動態調節焦距,同時具有獨特的伸縮性、良好的生物相容性和生物可降解性;進一步該團隊利用激光加工技術制備了可變焦的仿生復眼,實現了大視場變焦成像的功能,如圖1所示。利用其高精度、高分辨率和三維加工能力,飛秒激光加工技術成為制備三維微流控...
皮秒激光精密微孔加工應用作為一種激光精密加工技術,皮秒激光在對高硬度金屬微孔加工方面的應用早在20世紀90年代初就有報道。1996年德國學者Chichkov等研究了納秒、皮秒以及飛秒激光與材料的作用機理,并在真空靶室中對厚度100μm的不銹鋼進行了打孔實驗,建立了激光微納加工的理論模型,為后續的激光微納加工實驗研究奠定了堅實的理論基礎。1998年Jandeleit等對厚度為250nm的銅膜進行了精密制孔實驗,實驗指出使用同一脈寬的皮秒激光器對厚度較薄的金屬材料制孔時,采用高峰值功率更有可能獲得高質量的的制孔效果。然而,優異的加工效果不僅取決于脈沖寬度以及峰值功率,制孔方式也是一個至關重要的因素...
在微納加工過程中,薄膜的形成方法主要為物理沉積、化學沉積和混合方法沉積。蒸發沉積(熱蒸發、電子束蒸發)和濺射沉積是典型的物理方法,主要用于沉積金屬單質薄膜、合金薄膜、化合物等。熱蒸發是在高真空下,利用電阻加熱至材料的熔化溫度,使其蒸發至基底表面形成薄膜,而電子束蒸發為使用電子束加熱;磁控濺射在高真空,在電場的作用下,Ar氣被電離為Ar離子高能量轟擊靶材,使靶材發生濺射并沉積于基底;磁控濺射方法沉積的薄膜純度高、致密性好,熱蒸發主要用于沉積低熔點金屬薄膜或者厚膜;化學氣相沉積(CVD)是典型的化學方法而等離子體增強化學氣相沉積(PECVD)是物理與化學相結合的混合方法,CVD和PEC...
微納加工中蒸鍍的物理過程包括:沉積材料蒸發或升華為氣態粒子→氣態粒子快速從蒸發源向基片表面輸送→氣態粒子附著在基片表面形核、長大成固體薄膜→薄膜原子重構或產生化學鍵合。將襯底放入真空室內,以電阻、電子束、激光等方法加熱膜料,使膜料蒸發或升華,氣化為具有一定能量(~eV)的粒子(原子、分子或原子團)。氣態粒子以基本無碰撞的直線運動飛速傳送至襯底,到達襯底表面的粒子一部分被反射,另一部分吸附在襯底上并發生表面擴散,沉積原子之間產生二維碰撞,形成簇團,有的可能在表面短時停留后又蒸發。粒子簇團不斷地與擴散粒子相碰撞,或吸附單粒子,或放出單粒子。此過程反復進行,當聚集的粒子數超過某一臨界值時...
光刻是微納加工技術中關鍵的工藝步驟,光刻的工藝水平決定產品的制程水平和性能水平。光刻的原理是在基底表面覆蓋一層具有高度光敏感性光刻膠,再用光線(一般是紫外光、深紫外光、極紫外光)透過光刻板照射在基底表面,被光線照射到的光刻膠會發生反應。此后用顯影液洗去被照射/未被照射的光刻膠, 就實現了圖形從光刻板到基底的轉移。光刻膠分為正性光刻和負性光刻兩種基本工藝,區別在于兩者使用的光刻膠的類型不同。負性光刻使用的光刻膠在曝光后會因為交聯而變得不可溶解,并會固化,不會被溶劑洗掉,從而該部分硅片不會在后續流程中被腐蝕掉,負性光刻光刻膠上的圖形與掩模版上圖形相反。我造技術的研究從其誕生之初就一直牢...
微納加工技術是先進制造的重要組成部分,是衡量國家高質量的制造業水平的標志之一,具有多學科交叉性和制造要素極端性的特點,在推動科技進步、促進產業發展、拉動科技進步、保障**安全等方面都發揮著關鍵作用。微納加工技術的基本手段包括微納加工方法與材料科學方法兩種。很顯然,微納加工技術與微電子工藝技術有密切關系。微納加工大致可以分為“自上而下”和“自下而上”兩類。“自上而下”是從宏觀對象出發,以光刻工藝為基礎,對材料或原料進行加工,小結果尺寸和精度通常由光刻或刻蝕環節的分辨力決定。“自下而上”技術則是從微觀世界出發,通過控制原子、分子和其他納米對象的相互作用力將各種單元構建在一起,形成微納結構與器件。在...
光刻是微納加工技術中關鍵的工藝步驟,光刻的工藝水平決定產品的制程水平和性能水平。光刻的原理是在基底表面覆蓋一層具有高度光敏感性光刻膠,再用光線(一般是紫外光、深紫外光、極紫外光)透過光刻板照射在基底表面,被光線照射到的光刻膠會發生反應。此后用顯影液洗去被照射/未被照射的光刻膠, 就實現了圖形從光刻板到基底的轉移。光刻膠分為正性光刻和負性光刻兩種基本工藝,區別在于兩者使用的光刻膠的類型不同。負性光刻使用的光刻膠在曝光后會因為交聯而變得不可溶解,并會固化,不會被溶劑洗掉,從而該部分硅片不會在后續流程中被腐蝕掉,負性光刻光刻膠上的圖形與掩模版上圖形相反。在我國,微納制造技術同樣是重點發展...
電子束的能量越高,束斑的直徑就越小,比如10keV的電子束斑直徑為4nm,20keV時就減小到2nm。電子束的掃描步長由束斑直徑所限制。步長過大,不能實現緊密地平面束掃描;步長過小,電子束掃描區域會受到過多的電子散射作用。電子束流劑量由電子束電流強度和駐留時間所決定。電子束流劑量過小,抗蝕劑不能完全感光;電子束流劑量過大,圖形邊緣的抗蝕劑會受到過多的電子散射作用。由于高能量的電子波長要比光波長短成百上千倍,因此限制分辨率的不是電子的衍射,而是各種電子像散和電子在抗蝕劑中的散射。電子散射會使圖形邊緣內側的電子能量和劑量降低,產生內鄰近效應;同時散射的電子會使圖形邊緣外側的抗蝕劑感光,產生外鄰近效...
飛秒激光微納加工類型飛秒激光微納加工的類型可以分為激光燒蝕微加工以及雙光子聚合加工。激光燒蝕微加工利用其本身獨特的性質使材料瞬間蒸發,而不經歷熔化過程,具有優良的加工特性。雙光子聚合加工三維微納結構時利用飛秒激光聚焦點上發生的雙光子吸收效應,獲得比衍射極限還要小的光響應,可以在多種材料上進行微納米尺度的加工。對波長特定的激光來說,材料可分為吸收材料和透明材料。飛秒激光對于這些材料的作用機理都不相同。由于自由電子大量存在的緣故,金屬具有良好的導熱性和導電性。透明材料原本不會吸收這一波段,但是由于飛秒激光可以產生極高的光強,它使材料實現對激光的非線性吸收。微納加工涉及領域廣、多學科交叉融合,其較主...
微納制造可以應用在什么哪些領域?微納制造作為國家新興產業發展的重大關鍵技術之一,對國家裝備實力和國民經濟技術的發展起到重要作用。微納制造技術的進步,推動著三大前沿科技的發展:生物技術、信息技術、納米技術。由于微納制造技術產品有體積小、集成度高、重量輕、智能化程度高等諸多優點,在信息科學、生物醫療、航空航天等領域廣的應用。微納加工技術是先進制造的重要組成部分,是衡量國家高質量的制造業水平的標志之一,具有多學科交叉性和制造要素極端性的特點,在推動科技進步、促進產業發展、拉動科技進步、保障**安全等方面都發揮著關鍵作用。微納加工技術的基本手段包括微納加工方法與材料科學方法兩種。很顯然,微納加工技術與...
2012年北京工業大學Duan等使用課題組自行研制的皮秒激光器對金屬鉬、鈦和不銹鋼進行了精密制孔研究,并利用旋切制孔方式對厚度為0.3mm的金屬鉬實現了孔徑?小于200μm的微孔加工,利用螺旋制孔方式在厚度為1mm不銹鋼上實現了孔徑為200μm的制孔效果。實驗指出大口徑微孔加工應采用旋切制孔方式,而加工較小口徑時則更宜選用螺旋制孔方式。皮秒激光精密微孔加工過程中,對于厚度較小的材料(d<1μm),由于激光與材料作用的時間較短,以采用高峰值功率、窄脈寬的激光為宜,而對于厚度在百微米甚至超過1mm的金屬材料的微孔加工,除了要考慮激光峰值功率以及脈沖寬度外,選擇合適的制孔方式是必要的。此外,根據材料...
微納加工大致可以分為“自上而下”和“自下而上”兩類。“自上而下”是從宏觀對象出發,以光刻工藝為基礎,對材料或原料進行加工,小結果尺寸和精度通常由光刻或刻蝕環節的分辨力決定。“自下而上”技術則是從微觀世界出發,通過控制原子、分子和其他納米對象的相互作用力將各種單元構建在一起,形成微納結構與器件。基于光刻工藝的微納加工技術主要包含以下過程:掩模(mask)制備、圖形形成及轉移(涂膠、曝光、顯影)、薄膜沉積、刻蝕、外延生長、氧化和摻雜等。在基片表面涂覆一層某種光敏介質的薄膜(抗蝕膠),曝光系統把掩模板的圖形投射在(抗蝕膠)薄膜上,光(光子)的曝光過程是通過光化學作用使抗蝕膠發生光化學作用...
在微納加工過程中,薄膜的形成方法主要為物理沉積、化學沉積和混合方法沉積。蒸發沉積(熱蒸發、電子束蒸發)和濺射沉積是典型的物理方法,主要用于沉積金屬單質薄膜、合金薄膜、化合物等。熱蒸發是在高真空下,利用電阻加熱至材料的熔化溫度,使其蒸發至基底表面形成薄膜,而電子束蒸發為使用電子束加熱;磁控濺射在高真空,在電場的作用下,Ar氣被電離為Ar離子高能量轟擊靶材,使靶材發生濺射并沉積于基底;磁控濺射方法沉積的薄膜純度高、致密性好,熱蒸發主要用于沉積低熔點金屬薄膜或者厚膜;化學氣相沉積(CVD)是典型的化學方法而等離子體增強化學氣相沉積(PECVD)是物理與化學相結合的混合方法,CVD和PEC...
作為前沿加工技術,飛秒激光加工具有熱影響區小、與材料相互作用呈非線性過程、超出衍射極限的高分辨率加工等特點,可以實現對各種材料的高質量、高精度微納米加工和三維微納結構制造。飛秒激光對材料的加工方式靈活多樣,既可實現增材、減材和等材制造,又能夠以激光直寫和激光并行加工的方式制備微納結構。其中,飛秒激光直寫通常用于復雜、不規則的微納結構加工,具有較高的空間分辨率、加工靈活性和自由度,然而鑒于其逐點加工的技術特點,加工效率較低;飛秒激光并行加工包括基于數字微鏡器件的光刻技術、空間光調制器和激光干涉加工等方法,具有較高的加工效率,但無法加工任意三維微結構。飛秒激光加工方式各有優缺點,可以...
微納加工技術是先進制造的重要組成部分,是衡量國家制造業水平的標志之一,具有多學科交叉性和制造要素極端性的特點,在推動科技進步、促進產業發展、拉動科技進步、保障**安全等方面都發揮著關鍵作用。微納加工技術的基本手段包括微納加工方法與材料科學方法兩種。很顯然,微納加工技術與微電子工藝技術有密切關系。廣東省科學院半導體研究所微納加工平臺面向半導體光電子器件、功率電子器件、MEMS、生物芯片等前沿領域提供技術咨詢、器件設計、版圖設計、光刻、刻蝕、鍍膜等技術服務。在微納加工過程中,薄膜的形成方法主要為物理沉積、化學沉積和混合方法沉積。盤錦微納加工廠家 廣東省科學院半導體研究所致力于推動微納...
作為前沿加工技術,飛秒激光加工具有熱影響區小、與材料相互作用呈非線性過程、超出衍射極限的高分辨率加工等特點,可以實現對各種材料的高質量、高精度微納米加工和三維微納結構制造。飛秒激光對材料的加工方式靈活多樣,既可實現增材、減材和等材制造,又能夠以激光直寫和激光并行加工的方式制備微納結構。其中,飛秒激光直寫通常用于復雜、不規則的微納結構加工,具有較高的空間分辨率、加工靈活性和自由度,然而鑒于其逐點加工的技術特點,加工效率較低;飛秒激光并行加工包括基于數字微鏡器件的光刻技術、空間光調制器和激光干涉加工等方法,具有較高的加工效率,但無法加工任意三維微結構。飛秒激光加工方式各有優缺點,可以...
當微納加工技術應用到光電子領域,就形成了新興的納米光電子技術,主要研究納米結構中光與電子相互作用及其能量互換的技術.納米光電子技術在過去的十多年里,一方面,以低維結構材料生長和能帶工程為基礎的納米制造技術有了長足的發展,包括分子束外延(MBE)、金屬有機化學氣相淀積(MOCVD)和化學束外延(CBE),使得在晶片表面外延生長方向(直方向)的外延層精度控制到單個原子層,從而獲得了具有量子尺寸效應的半導體材料;另一方面,平面納米加工工藝實現了納米尺度的光刻和橫向刻蝕,使得人工橫向量子限制的量子線與量子點的制作成為可能.同時,光子晶體概念的出現,使得納米平面加工工藝廣地應用到光介質材料...
MEMS(微機電系統),是指以微型化、系統化的理論為指導,通過半導體制造等微納加工手段,形成特征尺度為微納米量級的系統裝置。相對于先進的集成電路(IC)制造工藝(遵循摩爾定律),MEMS制造工藝不單純追求線寬而注重功能特色化,即利用微納結構或/和敏感材料實現多種傳感和執行功能,工藝節點通常從500nm到110nm,襯底材料也不局限硅,還包括玻璃、聚合物、金屬等。由MEMS技術構建的產品往往具有體積小、重量輕、功耗低、成本低等優點,已廣泛應用于汽車、手機、工業、醫療、**、航空航天等領域。廣東省科學院半導體研究所微納加工平臺,面向半導體光電子器件、功率電子器件、MEMS、生物芯片等前...
微納加工技術是先進制造的重要組成部分,是衡量國家制造業水平的標志之一,具有多學科交叉性和制造要素極端性的特點,在推動科技進步、促進產業發展、拉動科技進步、保障**安全等方面都發揮著關鍵作用。微納加工技術的基本手段包括微納加工方法與材料科學方法兩種。很顯然,微納加工技術與微電子工藝技術有密切關系。廣東省科學院半導體研究所微納加工平臺面向半導體光電子器件、功率電子器件、MEMS、生物芯片等前沿領域提供技術咨詢、器件設計、版圖設計、光刻、刻蝕、鍍膜等技術服務。微納檢測主要是表征檢測:原子力顯微鏡、掃描電鏡、掃聲波掃描顯微鏡、白光干涉儀、臺階儀等。宜昌微納加工中心 微納加工中蒸鍍的...
激光微納加工技術的實現方式:接觸式并行激光加工技術是指利用微球體顆粒進行激光圖案化。微球激光納米加工的機理。微球激光納米加工技術初源于對激光清潔領域的研究。研究發現,基底上的微小球形顆粒在脈沖激光照射后,基底上球形顆粒的中心位置能夠產生亞波長尺寸的微/納孔。對于金屬顆粒而言,這是由于顆粒與基底之間的LSPR產生的強電磁場增強造成的;對于介質顆粒而言,由于其大半部分是透明的,可以將透明顆粒看成為微球透鏡,入射光在微球形透鏡的底面實現聚焦而引起的電磁場增強。這一過程可以實現入射光強度的60倍增強。通過對微球的直徑,折射率,環境以及入射的激光強度進行設計,可以實現在基底上燒蝕出亞波長尺寸...
高精度的微細結構可以通過電子束直寫或激光直寫制作,這類光刻技術,像“寫字”一樣,通過控制聚焦電子束(光束)移動書寫圖案進行曝光,具有很高的曝光精度,但這兩種方法制作效率極低,尤其在大面積制作方面捉襟見肘,目前直寫光刻技術適用于小面積的微納結構制作。近年來,三維浮雕微納結構的需求越來越大,如閃耀光柵、菲涅爾透鏡、多臺階微光學元件等。據悉,蘋果公司新上市的手機產品中人臉識別模塊就采用了多臺階微光學元件,以及當下如火如荼的無人駕駛技術中激光雷達光學系統也用到了復雜的微光學元件。這類精密的微納結構光學元件需采用灰度光刻技術進行制作。直寫技術,通過在光束移動過程中進行相應的曝光能量調節,可以實現良好的灰...
激光微納加工技術的實現方式:接觸式并行激光加工技術是指利用微球體顆粒進行激光圖案化。微球激光納米加工的機理。微球激光納米加工技術初源于對激光清潔領域的研究。研究發現,基底上的微小球形顆粒在脈沖激光照射后,基底上球形顆粒的中心位置能夠產生亞波長尺寸的微/納孔。對于金屬顆粒而言,這是由于顆粒與基底之間的LSPR產生的強電磁場增強造成的;對于介質顆粒而言,由于其大半部分是透明的,可以將透明顆粒看成為微球透鏡,入射光在微球形透鏡的底面實現聚焦而引起的電磁場增強。這一過程可以實現入射光強度的60倍增強。通過對微球的直徑,折射率,環境以及入射的激光強度進行設計,可以實現在基底上燒蝕出亞波長尺寸...