電化學法處理含酚廢水過程中,重力環境下和重力攪拌環境下電極表面均有氣泡富集、廢水中均有氣泡分散于其中。而超重力環境下電極表面無明顯氣泡富集、廢水中無氣泡分散于其中。在裝置氣相出口關閉的情況下,電極表面脫離的氣泡和廢水中溢出的氣泡聚集于反應裝置端蓋上。這表明超重...
綜合活性和穩定性等因素,目前工業上選用的PEM電解槽陽極催化劑以銥黑以及IrO2等為主。不同催化材料的陽極過電勢通常為200~500mV。在高電位、氧化、酸性環境下,PEM電解槽對陽極催化劑材料的要求極為苛刻,氫健康能滿足該要求的催化材料但限于某些貴金屬。通常...
不同于堿性水電解和PEM水電解,高溫固體氧化物水電解制氫采用固體氧化物為電解質材料,工作溫度800~1000℃,制氫過程電化學性能明顯提升,效率更高。SOEC電解槽電極采用非貴金屬催化劑,陰極材料選用多孔金屬陶瓷Ni/YSZ,陽極材料選用鈣鈦礦氧化物,電解質采...
隨著可再生能源發電裝機容量不斷上升、比例不斷增加、可再生能源電力價格不斷下降;同時,結合碳稅、碳交易等利好政策,水電解制氫的經濟性將明顯提高;而且,利用可再生能源電力的水電解制氫具備幾乎碳零排放的優勢,因此在各種制氫方式中,水電解制氫的占比將大幅提升,成為實現...
質子交換膜(PEM)在氫燃料電池、電解水制氫氣等領域中所交換的陽離子為質子,又被稱為離子膜。質子交換膜處于有機氟化工產業鏈末端,其上游是有機氟化工的單體材料,下游是基于質子交換膜的氯堿工業、燃料電池、電解水、儲能電池等應用領域。目前產業化應用的均為全氟質子交換...
利用電化學手段分離溶液中的金屬離子、有機分子的方法,內電解分離法:在酸性溶液中,利用金屬氧化-還原電位的不同,可以組成一個內電解池,即不需要外加電壓就可以進行電解。例如要從大量鉛中分離微量銅,在硫酸溶液中Cu比Pb先還原,因此可將鉛板作為一個電極,與鉑電極相連...
我國將氫能作為戰略能源技術,給予持續的政策支持,推動產業化進程。在政策、資金等多因素疊加催化下,近幾年國內加氫站等基礎設施、產業鏈關鍵技術與裝備得到發展,形成長三角、珠三角、京津冀等氫能產業熱點區域。水電解制氫是指水分子在直流電作用下被解離生成氧氣和氫氣,分別...
現在氫主要從天然氣或煤炭中提取,被稱為“灰氫”,提取過程每年排放8.3億噸二氧化碳;把二氧化碳通過捕集、埋存、利用,從而避免大量排放的氫,被稱為“藍氫”;但較佳方案還是使用可再生能源對水進行電解提取的氫,即“綠氫”。2020年全球多國宣布重金投資氫能產業。過去...
對于負載催化劑,金屬-載體相互作用和基底的導電性至關重要。酸性OER材料發展,并強調從機理分析性能提高.對金屬性質(合金,單原子等)催化劑,氧化物(釕/銥氧化物,非貴金屬氧化物),金屬氧酸鹽類(鈣鈦礦,燒綠石,其它氧酸鹽類),其它無機金屬和非金屬材料進行周到綜...
為此降低貴金屬Pt、Pd載量,開發適應酸性環境的非貴金屬析氫催化劑成為研究熱點。氫健康膜電極中析氫、析氧電催化劑對整個水電解制氫反應十分重要。理想電催化劑應具有抗腐蝕性、良好的比表面積、氣孔率、催化活性、電子導電性、電化學穩定性以及成本低廉、環境友好等特征。陰...
隨著各國加大力度應對氣候變化,綠氫產業正迎來發展熱潮。2021年2月,歐洲30家公司聯合啟動了世界較大綠氫項目之一,選址在太陽能富集的歐洲西南部伊比利亞半島。這30家企業覆蓋了綠氫產業鏈的上中下游,包括太陽能開發商、電解槽供應商、大型能源和工業集團以及融資機構...
與ALK技術對比,氫健康PEM水電解制氫技術啟停速度快、負荷波動范圍廣、產氫壓力高,尤其適合利用可再生能源電力(尤其是離網電力)制氫,是實現大規模水電解制氫應用較有效的方式之一。此外,它還可以實現對風電、水電、光伏電等電力能源的調峰運行和對棄電資源的充分利用,...
離子交換膜是具有離子交換性能的、由高分子材料制成的薄膜(也有無機離子交換股,但其使用尚不普通)。它與離子交換樹脂相似,都是在高分子骨架上連接一個活性基團,但作用機理和方式、效果都有不同之處。當前市場上離子交換膜種類繁多,也沒有統一的分類方法。一般按膜的宏觀結構...
因此,單純從規模和用量來看,Ir資源儲量難以維持行業的發展,必須對現有的PEM水電解技術進行完善和升級。一方面,可以通過提升催化劑、膜電極技術,以及電解槽整體技術,大幅度降低Ir的用量;另一方面,可以有效回收Ir資源,使其回收利用率達90%以上。Christi...
在市場化進程方面,堿水電解(AWE)作為較為成熟的電解技術占據著主導地位,尤其是一些大型項目的應用。AWE采用氫氧化鉀(KOH)水溶液為電解質,以石棉為隔膜,分離水產生氫氣和氧氣,效率通常在70%~80%。一方面,AWE在堿性條件下可使用非貴金屬電催化劑(如N...
我國擁有全球規模較大、門類較全的工業生產體系,擁有豐富的可再生能源資源,在“雙碳”目標的背景下,工業領域將有大規模應用氫能的發展趨勢。現階段,氫燃料電池汽車的發展依賴于有關部門的補貼和支持。根據我國實際情況,未來幾年氫能在交通領域的發展仍遵循商用車先發展,乘用...
電化學反應是屬于電化學范疇的化學反應。電化學是有關電與化學變化關系的一個化學分支。電化學是邊緣學科,是多領域的跨學科。對“電化學”,古老的定義認為它是“研究物質的化學性質或化學反應與電的關系的科學”。以后Bockris下了定義,認為是“研究帶電界面上所發生現象...
陰、陽離子交換膜層粘合成型法的基本過程是用粘合劑分別涂覆陰、陽離子交換膜的內側,然后疊合,排除內部的氣泡和液泡,經干燥而得雙極膜。也可將制得的雙極膜通過加熱加壓進一步增強兩膜層間的粘合力。為了減小雙極膜的工作電壓,所用的粘合劑應該是可滲透的粘合劑,如聚乙烯亞胺...
在技術層面,電解水制氫主要分為AWE、PEM水電解,固體聚合物陰離子交換膜(AEM)水電解、固體氧化物(SOE)水電解。其中,AWE是較早工業化的水電解技術,已有數十年的應用經驗,較為成熟;PEM電解水技術近年來產業化發展迅速,SOE水電解技術處于初步示范階段...
因此,單純從規模和用量來看,Ir資源儲量難以維持行業的發展,必須對現有的PEM水電解技術進行完善和升級。一方面,可以通過提升催化劑、膜電極技術,以及電解槽整體技術,大幅度降低Ir的用量;另一方面,可以有效回收Ir資源,使其回收利用率達90%以上。Christi...
PEM水電解制得的氫氣純度高,而且其制氫負荷可以實現在0~1之間智能連續自動化控制,因而PEM水電解制氫逐步取代了傳統的堿水制氫和氫氣瓶組等方式。由于氫氣可以大規模長時間存儲,相對于其他儲能方式,在時間尺度和規模尺度上均有明顯優勢;結合可再生能源電力的波動性,...
PEM水電解制氫技術具備快速啟停優勢,能匹配可再生能源發電的波動性,逐步成為P2G制氫主流技術。不同于堿性水電解和PEM水電解,高溫固體氧化物水電解制氫采用固體氧化物為電解質材料,工作溫度800~1000℃,制氫過程電化學性能明顯提升,效率更高。SOEC電解槽...
不同于堿性水電解和PEM水電解,高溫固體氧化物水電解制氫采用固體氧化物為電解質材料,工作溫度800~1000℃,制氫過程電化學性能明顯提升,效率更高。SOEC電解槽電極采用非貴金屬催化劑,陰極材料選用多孔金屬陶瓷Ni/YSZ,陽極材料選用鈣鈦礦氧化物,電解質采...
PEMWE的組裝方法,實際運行條件,包括離聚物,膜,氣體擴散層,極板,催化劑層在內的各個組分都是影響PEMWE性能的關鍵參數.對各個組分的發展和應用現狀進行綜述,同時對有實際應用前景的催化劑進行分析,包括負載型催化劑,銥/釕為主體的摻雜型催化劑。借助創新實驗方...
當前,全世界對氫能這一話題有極大興趣,但在政策層面,卻鮮有相應的政策行動。比如說,目前政策制定者的興趣點是集中在交通運輸部門,而對難以脫碳的部門關注較少。如圖所示,在氫能的很多領域,相應的政策制定是滯后甚至缺失的。然而,要實現零排放,綠氫必須是解決方案的一部分...
氫燃料電池車被視為新能源汽車的下一個風口。質子交換膜電解水作為氫燃料電池中心部件,其質量好壞直接影響電池的使用壽命。從價值量看,氫能源燃料電池中成本占比較高的自然是燃料電池電堆,其次是儲氣瓶,而在燃料電池堆中,有個關鍵材料,那就是質子交換膜電解水,且成本占到了...
綠氫發展的本質問題是什么?發展氫能的本質就是要解決去碳問題,所以在脫碳的過程中綠氫將會發揮非常重要的作用。目前,氫能或者綠氫發展的本質問題是成本問題,需要政策、技術、市場三位一體,共同促進。綠氫發展需要哪些政策支持?一、主管部門仿照光伏電價政策,制訂綠氫價格政...
隨著水污染加劇,人們對飲用水水質越來越關心。試驗證明,雙極膜納濾法可以去除消毒過程中產生的微毒副產物、痕量的除草劑、殺蟲劑、重金屬、天然有機物及硬度、硫酸鹽及硝酸鹽等。同時具有處理水質好且穩定、化學藥劑用量少、占地少、節能、易于管理和維護的優點。在電鍍加工和合...
PEM水電解制氫技術具備快速啟停優勢,能匹配可再生能源發電的波動性,逐步成為P2G制氫主流技術。不同于堿性水電解和PEM水電解,高溫固體氧化物水電解制氫采用固體氧化物為電解質材料,工作溫度800~1000℃,制氫過程電化學性能明顯提升,效率更高。氫健康SOEC...
原電池是利用兩個電極之間金屬性的不同,產生電勢差,從而使電子的流動,產生電流.又稱非蓄電池,是電化電池的一種,其電化反應不能逆轉,即是只能將化學能轉換為電能,簡單說就即是不能重新儲存電力,與蓄電池相對。原電池是將化學能轉變成電能的裝置。所以,根據定義,普通的干...