4.脂質體的性質:脂質體的形態、大小、表面電荷等性質會影響藥物的載藥率。例如,小尺寸的脂質體通常具有較高的表面積,有利于藥物的擴散和溶解。5.藥物與脂質體的相互作用:藥物與脂質體之間的相互作用形式也會影響載藥率,例如藥物與脂質質體之間的靜電相互作用、疏水相互作用等。評估脂質體的載藥率通常需要進行藥物釋放實驗或者溶解度測定等試驗,以確定藥物在脂質體中的含量或者釋放速率。通過優化脂質體的組成和制備方法,可以提高脂質體的載藥率,從而增強其在藥物傳遞等應用中的效果。質粒DNA要在細胞內被有效地翻譯,質粒DNA必須經過有效的細胞內運輸進入細胞質,并從細胞質進入細胞核。肺靶向脂質體載藥對比劑與化學增敏劑共...
脂質體制備方法:原位制備脂質體“原位”被認為是臨床使?前形成的脂質體。Mepacthas的商業化產品就采?了這種?法進??產。將藥物和磷脂配制成散裝溶液,過濾滅菌、灌裝、凍?。在Mepacthas中,*包含三種成分,即活性成分胞壁三肽磷脂酰?醇胺(MTP-PE)、棕櫚酰油酰磷脂酰膽堿(POPC)和?酰磷脂酰絲氨酸(OOPS),并按?定?例(POPC:OOPS=7:3,MTP-PE:磷脂=1:250)。該產品為?燥的脂質餅,具有多孔結構,為與體質介質接觸提供了較?的表?積。臨床使?前,在?瓶中加?0.9%的?理鹽?溶液,將?燥物質?化,形成多層脂質體,粒徑為2.0-3.5μm,粒徑分布為單峰型。...
基于藥代動?學機制和脂質體性質,脂質體的質量控制通常包括粒徑和粒徑分布、形態、層狀結構、表?性質(zeta電位、PEGlated厚度和靶分?,如配體)、脂膜相變溫度、載藥效率、釋放速率等。例如,脂質體的?層結構會影響藥物的釋放速度,?形態會影響脂質體在體內的循環時間。 健康組織和**組織之間的血管系統差異使EPR效應得以實現。反過來, 由于不太完美的細胞填充導致更多的泄漏性質, 血管在細胞中具有較大的間隙。 因此,脂質體通過逃離血管的被動靶向效應在**中積累。對幾種不同**的被動靶向是由體內脂質體的大小和穩定性決定的。這可歸因于它們的小尺寸延長了循環時間并在組織中外滲。因此,考慮到各...
脂質體疫苗通常在已知疫苗中使用純化抗原或減毒病原體作為免疫原。然而,長期的免疫反應可能不會由純化抗原誘導,甚至有時根本不會誘導反應。另一方面,減毒疫苗可以在免疫的患者中產生應答。然而,遞送包裹在脂質體內的抗原可誘導長期應答,這在某些抗原的直接免疫中沒有觀察到。研究表明,惡性細胞的細胞膜可以形成包封潛在抗原的脂質體。文獻報道了包封在脂質體中的肽作為**疫苗的***應用能力。有研究評估了BLP25(一個含有合成人MUC1肽的25個氨基酸序列)作為**疫苗的能力。用二硬脂酰磷脂酰膽堿、膽固醇和二肉豆醇酰磷脂酰甘油(摩爾比3:1:25)中含有的單磷脂酰脂A(1%w/w)制備脂質體,然后與脂偶聯和非偶聯...
脂質體中輔助脂質中性脂也經常被用作陽離子脂質體的助手。例如,已知中性脂質1,2-二油基-asn-甘油-3-磷酸乙醇胺(DOPE)在胞吞作用后參與內體逃逸,膽固醇(一種內源性脂質)可以插入脂質雙層之間以增加納米顆粒的剛性。為了增加體內穩定性,一種非常普遍的方法包括插入聚乙二醇(PEG)偶聯的中性脂質,對納米顆粒進行聚乙二醇化。此外,中性輔助性脂質,如DOPE已被用于提高陽離子脂質體的遞送效率。DOPE提高核酸遞送效率的生物物理機制仍在研究中。**近的一項研究報道,含有DOPE的脂質單層呈現不規則的豆狀結構域,而缺乏DOPE的脂質單層呈現均勻的表面。除DOPE外,其他中性脂質,包括N-十二烷酰基肌...
脂質體用于抑菌的***除了脂質體**藥物,第二大類脂質體藥物是殺菌劑。兩性霉素B是一種廣譜多烯***,已經在醫學上使用了幾十年,被認為是***侵襲性******的金標準。它以細胞膜為靶點,與含膽固醇的哺乳動物細胞膜相比,對***細胞典型的含麥角甾醇膜表現出更高的親和力。兩性霉素B雖然具有很高的抗***活性,但也有嚴重的副作用,尤其是腎毒性。它是兩親性的,具有復雜的自關聯行為,不同類型的聚集體表現出不同的溶解度和毒性;聚集狀態也與藥物療效相關。因此,控制藥物的聚集狀態可以增強其***效果并降低其毒性。這種聚集控制是通過脂質納米配方實現的。幾種基于脂質的納米顆粒制劑。兩性霉素B已被開發出來,表現出...
非病毒載體通常具有比病毒載體更低的轉染效率,但由于它們被認為要安全得多,因此已被***研究。納米顆粒遞送系統,其中陽離子脂質納米顆粒通過核酸的負磷酸基團裝載,是一類主要的非病毒載體,顯示出高生產力和裝載效率。用于攜帶核酸的納米顆粒系統在整體上可分為基于脂質或聚合物的納米顆粒,在與核酸相互作用后,每種納米顆粒都被稱為“脂質復合物”或“多聚體”。這些復合物的細胞遞送被認為是通過內吞作用發生的,然后內體逃逸到細胞質中。陽離子脂質體作為核酸的一種傳遞系統,具有一定的優勢。首先,陽離子脂質體在體內給藥后是可生物降解的。內源性酶的存在可以分解脂質體的脂質成分。脂質體在各種納米載體之間****的生物相容性導...
利用設計的脂質,他們發現由1,2-二油醇-3-二甲基氨基-丙烷(DODMA)陽離子脂質組成的核酸脂質顆粒在小鼠和食蟹猴中分別以0.01mg/kg和0.3mg/kg的劑量包封siRNA時表現出基因沉默作用。**近的一項構效關系研究表明,脂質結構的細微差異可能導致轉染效率的明顯差異。作者設計并合成了1,4,7,10-四氮雜環十二烷環基和含咪唑的陽離子脂質,它們具有不同的疏水區域(例如,分別為膽固醇和雙薯蕷皂苷配基)。結果表明,這兩種陽離子脂質在HEK293細胞中誘導有效的基因轉染。由于AS-ODNs可以下調某些RNA并抑制靶蛋白的表達,因此它們被認為具有作為核酸藥物的潛力。深圳脂質體載藥抗體脂質體...
DOPC和DEPC是兩親性兩性離?磷脂,可形成蜂窩狀腔室的壁。帶負電荷的DPPG可阻?MVLs聚集。中性脂類(如三油酯和?油三酯)在雙層交叉點處充當疏?空間填充劑,并穩定這些膜結構。沒有中性脂質,將形成常規的ULV或MLV,?不是MVLs。配?中中性脂的?量決定了MVLs的捕獲體積和包封效率。GPs在制劑中起著關鍵作?,因為它們影響脂質體的?物物理性質(如藥物包被、穩定性和藥物釋放),并進?步影響體內藥代動?學?為和藥效學。碳氫鏈的?度、對稱性、分?間和分?內相互作?、分?和不飽和程度決定了雙層的厚度和流動性、相變溫度和藥物釋放率。簡??之,較?的烴鏈可以誘導更緊密的膜包裝并增加藥物潴留,?較...
兩者都含有一種可電離的脂質,在低pH值下帶正電荷(使RNA絡合),在生理pH值下為中性(減少潛在的毒性作用并促進有效載荷釋放)。它們還含有聚乙二醇化脂質,以減少血清蛋白的抗體結合(調理)和吞噬細胞的***,從而延長體循環。輝瑞公司的陽離子脂質:peg脂質:膽固醇:DSPC的摩爾比為(43:1.6:47:9.4),莫當納疫苗的摩爾比為(50:1.5:38.5:10)。這些納米顆粒直徑為80 - 100納米,每個脂質納米顆粒含有大約100個mRNA分子。ALC-0315(輝瑞)和SM-102 (Moderna)這兩種脂質都是叔胺,在低ph下質子化(因此帶正電荷)。它們的碳氫鏈通過可生物降解的酯基連...
脂質體各組分對核酸遞送效率的影響對于使用陽離子脂質體開發核酸***劑,一個先決條件是必須將核酸適當地遞送到靶細胞并到達適當的亞細胞區室(例如,細胞質或細胞核)。已知陽離子脂質體的遞送效率會受到陽離子脂質和輔助脂質類型及其組成的影響。陽離子脂質是納米粒子的**成分,具有一個帶正電的頭基和一個或兩個由碳氫鏈或類固醇結構組成的疏水尾區的共同結構。Felgner和同事報道了N-[1-(2,3-二聚氧基)丙基]-N,N,N-三甲基氯化銨(DOTAP)的合成,其具有一個單價陽離子頭和兩個碳氫化合物尾部,并用于制備小的單層脂質體。他們將DNA包裹的脂質體轉染到小鼠L細胞中,并證明陽離子脂質中和了帶負電荷...
脂質體質量控制的重要性與常規藥物劑型(如?分?注射溶液)不同,脂質體中裝載的***性分?在全?給藥后(如靜脈注射)轉運到腫瘤細胞的過程更為復雜主要經歷以下?個步驟:(1)從?管內間隙外滲到組織間質:脂質體通過擴散和/或對流穿越**?管壁不連續的內?連接點(100nm-2μm)進?**間質。同時?部分脂質體被MPS從體循環中***,特別是對于?尺?(>200nm、疏?和帶電顆粒表?(帶負電荷或正電荷)的顆粒。(2)通過擴散和對流進?間質運輸,以接近單個腫瘤細胞。利?主動靶向對脂質體進?表?修飾將克服顆粒在細胞外基質(ECM)中擴散的物理阻?,因為顆粒上的靶向配體與腫瘤細胞表?的受體之間產?了更?...
脂質體制備方法:二次乳化法該方法已被DepoCyte、DepoDur和Expel三種商業產品?于?產MVLs。整個?產過程通常包括以下四個順序操作:(1)形成“油包?”乳液,(2)形成“油包?”乳液,(3)在汽提?體或真空壓?的幫助下進?溶劑萃取,(4)微濾去除游離藥物,濃縮和交換外部溶液。在?產過程中,應提供?菌保證,因為由于微粒徑的MVLs不能通過0.22μm過濾作為?菌批次?產。Lu等研究了?藝對布?卡因MVLs關鍵質量屬性的影響,發現第?乳的粒徑隨著脂質濃度的增加?增?,剪切速度對粒徑影響較?。對于第?種乳液,在溶劑去除過程中,由于?些MVLs坍塌,藥物從內?相泄漏,導致包封效率降低。...
siRNA脂質體 RNA干擾(RNAi)途徑允許siRNA和miRNAs負向調節蛋白表達。siRNA是21~23對核苷酸組成的雙鏈RNA,可誘導同源靶mRNA沉默。為了發揮作用,雙鏈siRNA分裂成兩個單鏈RNA:乘客鏈和引導鏈。乘客鏈被argonaute-2蛋白降解,而引導鏈則被納入RNAi誘導的沉默復合體中,該復合體結合與引導鏈互補的mRNA并將其切割。siRNA似乎具有***多種疾病的巨大潛力,因為它們可以很容易地下調各種靶mRNA,而不考慮它們的位置(即在細胞核或細胞質中),并且它們的特異性結合表明它們比傳統化學藥物誘導的副作用更少。作為一種新型的基于核酸的***策略,siR...
脂質體制備方法:二次乳化法該方法已被DepoCyte、DepoDur和Expel三種商業產品?于?產MVLs。整個?產過程通常包括以下四個順序操作:(1)形成“油包?”乳液,(2)形成“油包?”乳液,(3)在汽提?體或真空壓?的幫助下進?溶劑萃取,(4)微濾去除游離藥物,濃縮和交換外部溶液。在?產過程中,應提供?菌保證,因為由于微粒徑的MVLs不能通過0.22μm過濾作為?菌批次?產。Lu等研究了?藝對布?卡因MVLs關鍵質量屬性的影響,發現第?乳的粒徑隨著脂質濃度的增加?增?,剪切速度對粒徑影響較?。對于第?種乳液,在溶劑去除過程中,由于?些MVLs坍塌,藥物從內?相泄漏,導致包封效率降低。...
載藥脂質體在體內的行為主要受囊泡的吸收、分布和消除等各種藥動學參數的影響。此外,這可能通過避免藥物泄漏來提高脂質體的穩定性,并增加脂質體在體內的滯留。就藥物的全身可用性而言,脂質體的位點特異性或靶向遞送可能更有利。使用靶向遞送,與其他組織中的藥物濃度相比,可以在特定部位獲得大量藥物。靶組織可獲得的脂質體包裹藥物的量和速度決定了藥物的**終生物利用度。 由此決定了藥物的發作、持續時間和程度作用取決于藥物從靶部位(組織)脂質體釋放的速度和程度。脂質體制備方法:二次乳化法。天津脂質體載藥核酸因此,可以實現靶向和長 循環的雙重好處。 免疫脂質體是利用抗體或其片段與脂質體之間的各種類型的連鎖來制備的。根...