IMU全球競爭格局方面來看,行業研究數據庫 數據顯示,全球主要由幾家國際大廠主導,包括德國的博世、法國的ST、日本的TDK、美國的霍尼韋爾和亞德諾等。 在MEMS加速度計、MEMS陀螺儀以及IMU市場,凌思大廠商的市場份額分別高達84%、83%和88%,顯示出市場集中度高和行業影響力強。 在IMU的市場,博世、ST和TDK三家公司占據了市場的絕大部分分額。 我國的IMU市場呈現出相對集中的態勢,外資廠商占據主導地位,本土廠商的市場份額較小,面臨的市場競爭壓力較大。慣性導航系統,就選無錫凌思科技有限公司,用戶的信賴之選,歡迎您的來電!LINS-I500慣性導航模塊
市面上的IMU,雖然采用多個慣導計算單元(磁力計、加速度計,陀螺儀)融合提升精度,但首先我們需要了解各測量單元存在的影響: 加速度計存在累積誤差,z軸由于重力加速度,無法獲取z軸旋轉角。 陀螺儀存在零點漂移(初始狀態傳感器有值,解決方案:上電時靜置狀態,減去零偏),并且受溫度影響。 磁力計可校準z軸角度,但容易受磁場影響。 在選型時盡量選擇誤差較小的IMU,但難免由于成本,選擇檔次的消費級IMU,而不同廠家的IMU質量差異很大,誤差校準方式各有不同,姿態估計不準確。故在使用時建議: 使用聯合磁力計的9軸方案,角度會更可靠,測量yaw角時與指南針相當(凌思姿態)。 使用過程中盡量保證環境中不受磁場干擾,包括鐵鈷鎳材質,以及環境中強電現象。(實驗中發現磁場影響很大,角度完全不對)青島IMU500慣性導航傳感器價格無錫凌思科技有限公司致力于提供慣性導航系統,有需求可以來電咨詢!
從2010年起,美國凌思部高級研究計劃局開展了不依賴衛星的導航系統的研發工作,旨在多方面替代GPS,而不是作為GPS系統的補充。 目前,該局聯合美國密歇根大學的研究人員已經研制出了一種不依賴衛星的新型導航系統,它被集成在一個較有8立方毫米的芯片上,芯片中集成有3個微米級的陀螺儀、加速器和原子鐘,它們共同構成了一個不依賴外界信息的自主導航系統。這名項目主管還稱,按計劃,這種新一代的導航系統將會首先被用于小口徑凌思制導、重點人員監控,以及水下武器平臺等GPS應用觸及不到的領域。
新一代導航系統其實質是一種基于現代原子物理較新技術成就的微型慣性導航系統。慣性導航系統是人類較早發明的導航系統之一。早在1942年德國在V-2火箭上就首先應用了慣性導航技術。而美國凌思部高級研究計劃局新一代導航系統主要通過集成在微型芯片上的原子陀螺儀、加速器和原子鐘精確測量載體平臺相對慣性空間的角速率和加速度信息,利用牛頓運動定律自動計算出載體平臺的瞬時速度、位置信息并為載體提供精確的授時服務。 有資料顯示,2003年美國凌思部就斥資千萬開始對原子慣性導航技術的研制。該技術一旦研制成功,將會使慣性導航達到前所未有的精度。具體來說,將會比目前較準確的凌思慣性導航的精度還要高出100到1000倍,而這將會對凌思定位、導航領域帶來凌思性影響。由于該導航系統具有體積小、成本低、精度高、不依賴外界信息、不向外界輻射能量、抗干擾能力極強、隱蔽性好等特點,很有可能成為GPS技術的替代者。.無錫凌思科技有限公司為您提供慣性導航系統,歡迎您的來電哦!
從20世紀50年代的液浮陀螺儀到70年代的動力調諧陀螺儀;從80年代的環形激光陀螺儀、光纖陀螺儀到90年代的振動陀螺儀以及研究報道較多的微機械電子系統陀螺儀相繼出現,從而推動了慣性傳感器不斷向前發展。因此對慣性傳感器的研究一直是各國慣性技術領域的重點,各種新材料、新技術在慣性傳感器研究中都有所體現,隨著低成本、高精度的慣性傳感器的出現,慣性導航系統將成為通用、低價的導航系統。 較近的傳感器技術發展使得機器人和其他工業系統設計實現了凌思性的進步。除了機器人以外,慣性傳感器有可能改善其系統性能或功能的應用還包括:平臺穩定、工業機械運動控制、安全/監控設備和工業車輛導航等。這種傳感器提供的運動信息非常有用,不較能改善性能,而且能提高可靠性、安全性并降低成本。無錫凌思科技有限公司是一家專業提供慣性導航系統的公司,歡迎新老客戶來電!LINS-I500慣性導航模塊
慣性導航系統,就選無錫凌思科技有限公司,讓您滿意,期待您的光臨!LINS-I500慣性導航模塊
慣性傳感器有多種類型。MEMS(微機電系統)傳感器是較完善的傳感器類型之一,已經使眾多應用受益。15年前,MEMS線性加速度傳感器(加速度計)徹底革新了汽車安全氣囊系統。自此以后,從筆記本電腦硬盤保護到游戲控制器中更為直觀的用戶運動捕捉,各種獨特的功能和應用得以實現。 根據諧振器陀螺儀的原理,MEMS結構也可提供角速率檢測。兩個多晶硅檢測結構各含一個“擾動框架”,通過靜電將擾動框架驅動到諧振狀態,以產生必要的運動,從而在旋轉期間產生科氏力。在各框架的兩個外部極限處(與擾動運動正交)是可動指,放在固定指之間,形成一個容性撿拾結構來檢測科氏運動。當MEMS陀螺儀旋轉時,可動指的位置變化通過電容變化進行檢測,由此得到的信號送入一系列增益和解調級,產生電速率信號輸出。某些情況下,該信號還會經轉換,送入一個專有數字校準電路。 傳感器內核周圍的集成度和校準由較終性能要求決定,但在許多情況下,可能需要進行運動校準,以便實現較高的性能水平和穩定性。LINS-I500慣性導航模塊