中國陸相頁巖油與粉砂質致密油,源巖與儲集層均屬于細粒沉積巖。源巖以陸相半深湖-深湖相富有機質頁巖以Ⅰ型和ⅡA 型干酪根為主,成熟度普遍偏低,Ro 一般為 0. 7% ~ 1. 3% ,處于生成偏輕的石油階段,頁巖有機質豐度較高( TOC 一般在2. 0% 以上,極高可達 40% ) ,是陸相頁巖油與致密油重要的烴源巖類型。儲集層多形成于三角洲前緣-三角洲-深湖-半深湖等細粒沉積環境,而有別于常規巖芯油氣儲集層形成的沖積扇-河流-三角洲平原等粗粒級沉積環境 。因此,開展中國陸相頁巖油與粉砂質致密油源儲細粒沉積巖沉積機理與分布模式研究,創新和建立沉積學研究的一個新分支—細粒沉積學,以頁巖、粉砂巖等不同巖性細粒沉積物的物理與化學性質及其沉積作用、沉積過程等為研究內容,將為明確細粒致密儲集層、富有機質頁巖分布預測、有利沉積相帶和富集區提供基礎依據。常規巖芯儲層孔隙度大于 10%;孔喉直徑大于1μm 或空氣滲透率大于1mD。NMR非常規巖芯靜態測量參數
致密油是一種非常規巖芯石油資源,產層為具極低滲透率的頁巖、粉砂巖、砂巖或碳酸鹽巖等致密儲集層,具有與富有機質源巖緊密接觸,原油油質輕的基本地質特征。在開采方面,也需要利用水平鉆井、分級壓裂等頁巖氣開采的特殊方式。在地質特征、甜點區、資源潛力等方面,致密油與頁巖油均存在差異。 致密油聚集機理則為“近源阻流聚集”或“近源成藏”,區域蓋層或致密化減孔,致使油氣遇阻,不能運移進入更遠圈閉。形成包括烴類初次運移和烴類聚集兩個過程,烴類初次運移受源儲壓差、供烴界面窗口、孔喉結構等控制,近源烴類聚集主要受長期供烴指向、優勢運移孔喉系統、規模儲集空間等時空匹配控制。NMR非常規巖芯靜態測量參數核磁共振孔隙度值通常落在共密度值的±1pu內。
低熟頁巖油與中高熟頁巖油的差異 低熟頁巖油發育在富含油型有機質的頁巖中,有機質低熟或未熟,尚未大量轉化為液態烴。其形成需要相對穩定的構造環境和水體環境、溫暖的氣候條件和適宜的水介質條件。此類頁巖沉積期的區域構造相對穩定,沉積位置多為盆地頁巖沉積層系邊緣區;沉積期的氣候溫暖,藻類及菌類繁盛或無脊椎動物繁盛,有機質來源充足,為富有機質頁巖的形成提供了物質基礎;沉積期水體較深,水動力較弱,易形成還原環境使有機質不易被分解,利于有機質保存。富有機質頁巖形成后,受埋藏深度、低地溫梯度等影響,經歷淺成巖作用或短暫成巖作用后經歷抬升剝蝕,造成有機質演化程度較低,未規模轉化為石油烴類,形成低熟頁巖油。
納米流體驅油; 傳統的常規強化采油(EOR)方法雖然能夠提高采收率,但提高幅度有限,一些大型油田的原油地質儲量(OOIP)仍有50%以上未被開采出,人們急需一種突破常規的方法來大幅提高采收率.納米技術作為一種新興的油氣開采技術,已經在提高傳感器靈敏度、控制失水量、提高固井質量、提高井眼穩定性等方面有了較為普遍的應用.在EOR中運用納米技術來提高采收率近些年逐漸成為人們關注的焦點,具體方法主要為使用納米流體進行驅油.T2用CPMG序列測定孔隙流體的橫向弛豫時間。
非常規巖芯油氣主要分布于前陸盆地坳陷—斜坡、坳陷盆地中心及克拉通向斜部位等負向構造單元中,油氣分布多數游離于二級構造單元高部位以外,主體是位于盆地中心及斜坡,呈大面積連續型或準連續型分布。非常規巖芯油氣勘探,關鍵是尋找大面積層狀儲集體,重要工作是突破“甜點區”,確定甜點區的富有機質烴源巖、有利儲集體、高含油氣飽和度、易于流動的流體、異常超壓、發育裂縫、適中的埋藏深度等主要控制因素,確立連續型油氣區邊界與空間展布。第一步,按照重要區評價標準,評價出重要區,結合儲層、局部構造、斷裂與微裂縫發育狀況,篩選出“甜點區”;第二步,在“甜點區 ”進行開采試驗,力爭取得工業生產突破,同時探索適合該區的技術路線;第三步,外甩擴大評價范圍,探索連續型含油氣邊界,確定油氣資源潛力。孔隙結構:單重、雙重、三重孔隙介質;共六種孔隙結構類型。NMR非常規巖芯靜態測量參數
測井作為評價已鉆探地層的經濟方法,在測定孔隙度和流體飽和度方面已經取得了進步。NMR非常規巖芯靜態測量參數
致密油與頁巖油均無明顯圈閉界限,無自然工業產能,需要采用直井縫網壓裂、水平井體積壓裂、空氣與CO2 等氣驅、納米驅油劑等方式進行開發,形成“人造滲透率”,持續獲得產能,屬典型“人造油氣藏”。) 。通過整理國內外有關致密油與頁巖油研究進展,筆者認為二者在地質、開發、工程等方面均存在明顯差異,應定義為 2 種不同類型的非常規巖芯油氣資源。 頁巖油是指成熟或低熟烴源巖已生成并滯留在頁巖地層中的石油聚集,頁巖既是生油巖,又是儲集巖,石油基本未運移( 圖 1) ,屬原地滯留油氣資源,是未來非常規巖芯石油發展的潛在領域。NMR非常規巖芯靜態測量參數