圖像識別技術,是機器視覺的一種現實應用。它模擬人眼的觀察能力,利用復雜的算法,從圖像中提取關鍵信息。在醫療領域,它能輔助醫生進行精確診斷;在安防領域,它能實現高效的人臉識別和異常行為檢測;在自動駕駛領域,它能為車輛提供精確的道路信息。圖像識別的應用很廣,功能強大,是現代科技的重要成就。慧視光電開發的圖像處理板在目標識別算法的賦能下就能夠實現精確的目標識別檢測,能夠為使用者提供目標跟蹤、定點檢測等領域的便捷服務。工程師以RK3399核心板為基礎進行定制開發,讓攝像頭更加智能高效,能夠輸出高清流的圖像視頻。云南開放AI智能目標跟蹤
在進行目標識別跟蹤時,OSD字符能夠幫助使用者更加清晰的看到識別跟蹤的效果,OSD字符疊加是目標跟蹤領域一個重要的部分,它能夠將各種圖像文本添加到視頻當中,實現字符與視頻的疊加,進而輔助進行目標檢測、跟蹤的識別,便于觀察目標。經過多年技術積累及更新迭代,以及客戶對OSD字符疊加的需求整理,我們將OSD拆分為多個組件,包括文字,角度顯示刻度線,矩形框,圓,多邊形,指北針等組件,可靈活設置位置、字號、顏色等屬性,為用戶定制OSD提供方便。甘肅研發AI智能廠家無人機吊艙能夠通過定制算法和精細定位技術實現農藥精細噴灑、農作物精細拋糧等操作。
OLO系列算法目前更新到YOLOv8。Yolo系列算法是典型的onestage算法,同樣,在算法設計上也注重目標區域的檢測以及特征的分類,這里目標區域的檢測采用的是和圖像區域分類定位的方式實現的。Yolo系列算法是一種比較成熟的目標檢測算法框架,基于這種框架的算法還在不斷地迭代中,當然解決的問題也越來越細化,比如候選區精度、比如小尺度檢測等。基本上YoloV3及以上版本的算法可以在很多場景下得到現實應用。2023 年 1 月,目標檢測經典模型 YOLO 系列再添一個新成員 YOLOv8,這是 Ultralytics 公司繼 YOLOv5 之后的又一次重大更新。YOLOv8 一經發布就受到了業界的廣關注,成為了這幾天業界的流量擔當。
慧視光電推出的SpeedDP深度學習算法開發平臺支持labelimg數據標注格式,用戶采集得到圖像數據后使用labelimg工具進行數據標注,然后將圖像文件和標注文件按如圖2所示指定的形式存放即可直接用于模型訓練。一般不同的業務場景需求對應不同的數據和算法參數設置,慧視SpeedDP深度學習算法開發平臺采用項目配置的方式來對不同的業務需求進行管理。采集數據后,能夠批量加載一定數量的數據并進行合并后輸入模型,實時顯示訓練記錄,并能以文件的形式保存運行時訓練參數。慧視AI板卡可以用于大型公共停車場。
隨著技術的不斷迭代發展,人工智能應用已潛移默化的深入到人們的日常生活中,智能圖片搜索、人臉識別、指紋識別、掃碼支付、視覺工業機器人、輔助駕駛等圖像視頻識別產品正在深刻改變著傳統行業。而這些功能實現的背后,都要依賴于人工智能數據的標注。但是如果遇到數據量龐大的標注需求,傳統的人工標注就顯得費時費力,會影響整個項目的進度。慧視SpeedDP是針對AI零基礎用戶的低門檻AI開發平臺,提供從數據標注、模型訓練、測試驗證到RockChip嵌入式硬件平臺模型部署的可視化AI開發功能。SpeedDP提供豐富的算法參數設置接口,滿足不同用戶業務場景的定制化需求。此外,慧視SpeedDP開發平臺支持本地化服務器部署,數據敏感的用戶也無需擔心數據信息泄露的問題。SpeedDP采用本地化服務器部署的方式。江西安防AI智能技術
RK3588作為慧視光電開發的全國產化工業級板卡,具備高性能、高精度的優點。云南開放AI智能目標跟蹤
YOLO(You Only Look Once)是一種目標檢測算法,它使用深度神經網絡模型,特別是卷積神經網絡,來實時檢測和分類對象。該算法開始被提出是在2016年的論文《You Only Look Once:統一的實時目標檢測》中。自發布以來,由于其高準確性和速度,YOLO已成為目標檢測和分類任務中很受歡迎的算法之一。它在各種目標檢測基準測試中實現了高性能。就在2023年5月初,YOLO-NAS模型被引入到機器學習領域,它擁有更高的精度和速度,超越了其他模型如YOLOv7和YOLOv8。云南開放AI智能目標跟蹤