設想這樣一個場景:孫悟空在飛行過程中完成了一次變化(這里假設他變成了一只鳥),但這個變化并不是像西游記拍攝中有煙霧效果完成的,而就是通過身體結構發生漸變來完成的,這種情況下,檢測器應該會在后續的檢測任務中失敗,因為設計好的檢測器只是為了檢測目標孫悟空的存在,孫悟空變身之后已經不存在這個目標,檢測器是不會有火眼金睛繼續檢測到變化后的孫悟空的。但是,對于跟蹤設備就不一樣了,跟蹤目標,哪怕目標在跟蹤過程中發生了巨大變化,這些都是跟蹤設備的本質能力。理想的跟蹤設備應該可以很好的跟上孫悟空漸變的整個過程,并且可以繼續后面變身之后對鳥的跟蹤。Viztra-LE034圖像跟蹤板采用國內智能AI芯片。靠譜的目標跟蹤性價比
目標運動估計是根據目標在過去的位置對目標的運動規律加以總結,并以此對目標將來的運動狀態進行預測。正確的預測,可以縮小匹配的計算區域,大幅的降低匹配計算量。在視頻跟蹤系統中由于被跟蹤的目標處于運動狀態,為了把目標始終保持在攝像機視野之內,必須對攝像機加以控制。在實際應用中,攝像機被固定在云臺上,云臺本身不做平移運動,但可以控制云臺進行水平擺動和上下俯仰,從而帶動攝像機做相應運動。所以,對攝像機的控制就是對云臺的控制。海南目標跟蹤哪里買智能圖像處理板在邊海防中的應用。
YOLO單卷積神經網絡在一次評價中直接從全圖中預測多個boundingboxes和類概率,在全圖上訓練并直接優化檢測性能,同時學習目標的泛化表示。然而,YOLO對邊界框預測施加了嚴格的空間約束,限制了模型可以預測的相鄰項目的數量。成群出現的小物件,如鳥類,對于此模型也同樣有問題。fasterR-CNN,一個由全深度CNN組成的單一統一對象識別網絡,提高了檢測的準確性和效率,同時減少了計算開銷。該模型集成了一種在區域方案微調之間交替的訓練方法,使得統一的、基于深度學習的目標識別系統能夠以接近實時的幀率運行,然后在保持固定目標的同時微調目標檢測。
目標跟蹤是計算機視覺研究領域的熱點之一,并得到廣泛應用。相機的跟蹤對焦、無人機的自動目標跟蹤等都需要用到了目標跟蹤技術。另外還有特定物體的跟蹤,比如人體跟蹤,交通監控系統中的車輛跟蹤,人臉跟蹤和智能交互系統中的手勢跟蹤等。簡單來說,目標跟蹤就是在連續的視頻序列中,建立所要跟蹤物體的位置關系,得到物體完整的運動軌跡。給定圖像首幀的目標坐標位置,計算在下一幀圖像中目標的確切位置。在運動的過程中,目標可能會呈現一些圖像上的變化,比如姿態或形狀的變化、尺度的變化、背景遮擋或光線亮度的變化等。目標跟蹤算法的研究也圍繞著解決這些變化和具體的應用展開。成都慧視光電技術有限公司推出基于全國產化RK3399PRO板的高性能圖像處理板卡。
2010年以前,目標跟蹤領域大部分采用一些經典的跟蹤方法,比如Meanshift、Particle Filter和Kalman Filter,以及基于特征點的光流算法等。Meanshift方法是一種基于概率密度分布的跟蹤方法,使目標的搜索一直沿著概率梯度上升的方向,迭代收斂到概率密度分布的局部峰值上。首先Meanshift會對目標進行建模,比如利用目標的顏色分布來描述目標,然后計算目標在下一幀圖像上的概率分布,從而迭代得到局部密集的區域。Meanshift適用于目標的色彩模型和背景差異比較大的情形,早期也用于人臉跟蹤。由于Meanshift方法的快速計算,它的很多改進方法也一直適用至今。成都慧視的RK3588跟蹤板卡很可以。江蘇專業目標跟蹤
智能目標識別及追蹤,讓目標無處可藏。靠譜的目標跟蹤性價比
相關濾波的跟蹤算法始于2012年P.Martins提出的CSK方法,作者提出了一種基于循環矩陣的核跟蹤方法,并且從數學上完美解決了密集采樣(Dense Sampling)的問題,利用傅立葉變換快速實現了檢測的過程。在訓練分類器時,一般認為離目標位置較近的是正樣本,而離目標較遠的認為是負樣本。回顧前面提到的TLD或Struck,他們都會在每一幀中隨機地挑選一些塊進行訓練,學習到的特征是這些隨機子窗口的特征,而CSK作者設計了一個密集采樣的框架,能夠學習到一個區域內所有圖像塊的特征。靠譜的目標跟蹤性價比