目前,有許多功能性AI工具可以幫助我們進行圖像標注,其中慧視SpeedDP是針對AI零基礎用戶的低門檻AI開發平臺,提供從數據標注、模型訓練、測試驗證到RockChip嵌入式硬件平臺模型部署的可視化AI開發功能。SpeedDP提供豐富的算法參數設置接口,滿足不同用戶業務場景的定制化需求。此外,慧視SpeedDP開發平臺支持本地化服務器部署,數據敏感的用戶也無需擔心數據信息泄露的問題。目前慧視SpeedDP開發平臺主要提供目標檢測算法的開發功能,不同的用戶可針對自己的業務場景進行AI算法的定制化開發以及算法模型的快速迭代優化。RK3399圖像處理板是我司自主研發的圖像識別模塊板,該板卡采用國產高性能CPU。四川圖像識別模塊分析
YOLO系列算法是目標識別領域很重要的技術之一,因為性能強大、消耗算力較少,一直以來都是實時目標檢測領域的主要范式。該框架被***用于各種實際應用,包括自動駕駛、監控和物流等行業的目標識別。自今年2月YOLOv9發布以后,近期,清華又推出了YOLOv10,作為計算機視覺領域的突破性框架,具備實時的端到端目標檢測能力,通過提供結合效率和準確性的強大解決方案,延續了YOLO系列的傳統。據悉,YOLOv10在各種模型規模上都實現了SOTA性能和效率。例如,YOLOv10-S在COCO上的類似AP下比RT-DETR-R18快1.8倍,同時參數數量和FLOP大幅減少。與YOLOv9-C相比,在性能相同的情況下,YOLOv10-B的延遲減少了46%,參數減少了25%。監控視頻圖像識別模塊公司成都慧視有工業級板卡RK3588.
要解決這個難題,慧視光電的算法工程師給出了小目標識別算法的方案,通過加強目標特征、數據增廣、放大輸入圖像、使用高分辨率的特征、設計合適的標簽分配方法,以讓小目標有更多的正樣本、利用小目標所處的環境信息或者其他容易檢測的物體之間的關系來輔助小目標的檢測。此外,利用自研的深度學習算法開發平臺,通過不斷的深度學習,能夠讓AI更加精細的識別目標。這個方法在瑞芯微RK3588、RV1126、RK3399pro等系列圖像跟蹤板上得到了較好地驗證。因此,將這個算法用在無人機高空識別領域,完全能夠彌補傳統算法的不足,達到更加穩定鎖定跟蹤的目的。
慧視光電開發的Viztra-HE030圖像處理板采用了工業級芯片RK3588,內部植入公司自主研發的智能圖像算法,架構更先進,核心數8核(4大4小),算力6.0TOPS,支持豐富的輸出接口,同時支持H264、H265兩類視頻編碼。可實時對目標進行識別或者人為的的鎖定,同時可以根據輸出目標的靶量信息,對目標進行實時跟蹤。這是達成目的的硬件條件。在算法領域,則需要一些特殊的算法。無人機執行任務時飛在高空,地面的物體就會顯得較小,小目標通常指圖像中像素面積小于32*32的物體,一般的AI算法難以實現精細鎖定跟蹤。AI算法賦能下的圖像處理板能夠進行目標識別。
無人機搭載如光電吊艙等帶有攝像頭的設備后,達到了實現智能識別的硬件條件,但是傳統的攝像頭只能獲取圖像,并不具備AI識別的功能。無人機AI識別算法的關鍵還是在于模仿人眼一樣進行視覺處理,然后AI進行智能提取和分析圖像,再和訓練模型進行快速比對,從而在無人機快速飛行的過程中做到實時目標識別。要想實現目標識別需要的硬件支持就是AI圖像處理板。圖像處理板通過算法的賦能,就能夠對目標區域的物體進行AI識別分析,從而做出判斷。由于無人機作業的環境復雜,因此對于圖像處理板的要求需要進一步提升。成都慧視開發的Viztra-HE030圖像處理板,采用了工業級芯片RK3588,采用先進架構,8核(4大4小)處理,算力能夠達到6.0TOPS。同時,慧視光電能夠根據需求環境定制豐富的輸出接口。慧視AI板卡可以用于大型公共停車場。云南自主研發圖像識別模塊提供商
慧視光電的RK3399是一款什么樣的板卡?四川圖像識別模塊分析
我國家的機動車數量龐大,但是停車位的建設卻沒有很好的跟上節奏,這也就導致許多車在出行時找不到停車位,車主也就不得不臨時將車停放在路邊。隨著路邊停放車輛的不斷增多,原本寬敞的道路也就變得狹窄,嚴重時甚至會堵得水泄不通。此外,一些大車由于阻擋視野,還容易造成“鬼探頭”等事故。通常情況下,交管部門會利用路邊的抓拍設備進行違停抓拍或者巡邏車進行巡邏,但是從實際效果來看,作用并不明顯。于是,無人機被派上用場。四川圖像識別模塊分析