近年來,我國多地智慧城市建設取得較好的成效,諸多創新技術和解決方案得到廣泛應用。而在智慧停車方面,許多公共場所也開始逐步落地應用。一車一桿的系統,智能識別進出入車輛,控制車輛進出入,統計車位空缺數,在很大程度上能夠優化公共停車場的交通擁堵等問題,能夠提高安全和通行效率。智慧停車閘道裝有車牌識別的機箱,該機箱集攝像頭、圖像處理板、顯示屏、內存卡等設備于一體,其中圖像處理板內置車牌識別算法,在攝像頭獲取車牌照片后,板卡算法就能進行快速又高精度的信息識別,并上傳數據到后端控制中心,能夠有效控制車輛的合理出入,方面管理者優化管理。搭載AI智能算法的跟蹤板如何實現目標識別及跟蹤?多系統適配目標跟蹤工程
目標跟蹤算法具有不同的分類標準,可根據檢測圖像序列的性質分為可見光圖像跟蹤和紅外圖像跟蹤;又可根據運動場景對象分為靜止背景目標跟蹤和運動背景下的目標跟蹤。由于基于區域的目標跟蹤算法用的是目標的全局信息,比如灰度、色彩、紋理等。因此當目標未被遮擋時,跟蹤精度非常高、跟蹤非常穩定,對于跟蹤小目標效果很好,可信度高。但是在灰度級的圖像上進行匹配和全圖搜索,計算量較大,非常費時間,所以在實際應用中實用性不強;其次,算法要求目標不能有太大的遮擋及其形變,否則會導致匹配精度下降,造成運動目標的丟失。多系統適配目標跟蹤工程成都慧視開發的RK3588跟蹤板怎么樣啊?
然后在下一幀采集的圖像中對目標對象進行特征提取;特征匹配的過程既是將提取出來的目標對象的特征與我們事先已經建立的特征模板進行匹配,通過與特征模板的相似程度來確定被跟蹤的目標對象,實現對目標的跟蹤。基于特征的跟蹤算法的優點在于速度快、對運動目標的尺度、形變和亮度等變化不敏感,能滿足特定場合的處理要求。但由于特征具有稀疏性和不規則性,所以該算法對于噪聲、遮擋、圖像模糊等比較敏感,如果目標發生旋轉,則部分特征點會消失,新的特征點會出現,因此需要對匹配模板進行更新。
視覺目標跟蹤是指在視頻圖像序列的各幀圖像中找到被跟蹤的目標。基于區域的跟蹤的基本思想是通過圖像分割或預先人為確定,提取包含著運動目標的運動變化的區域范圍作為匹配的目標模板,然后把目標模板與實時圖像在所有可能位置上進行疊加,然后計算某種圖像相似性度量的相應值,其比較大相似性相對應的位置就是目標的位置,Jorge等人提出的區域跟蹤算法不僅利用了分割結果來給跟蹤提供信息,同時也能利用跟蹤所提供的信息改善分割效果,把連續幀的目標匹配起來跟蹤目標。全國產化智能處理板應用廣闊。
YOLO算法具有以下幾個明顯的優勢:快速高效:YOLO算法采用單次前向傳播的方式進行目標檢測和跟蹤,相比傳統方法的多次掃描圖像,速度更快,適用于實時應用。準確性較高:通過引入先進的卷積神經網絡和相關技術,YOLO算法在目標定位和類別預測方面具有較高的準確性。多尺度處理:YOLO算法通過特征金字塔網絡和多尺度預測技術,可以處理不同大小的目標,并保持對小目標的有效檢測。端到端訓練:YOLO算法可以進行端到端的訓練,避免了多階段處理的復雜性,簡化了算法的實現和使用。有沒有能夠進行目標跟蹤的產品?多系統適配目標跟蹤工程
慧視光電對RK3588跟蹤板進行二次開發,實現AI智能應用。多系統適配目標跟蹤工程
我們要追蹤的目標可以是各式各樣,可能是人類,例如街上的行人、場上的運動員等等,也可以是汽車、飛機、船舶,甚至可以是顯微鏡下的細胞。雖然對象不盡相同,但是我們都有同一個目的,那就是想要確定這些目標的位置,去向和其他感興趣的特征等等,這就是多目標追蹤。研究多目標追蹤的歷史,會發現首先是在二戰時用作對敵機的預警系統,基本思想是讓雷達傳感器發射能量,然后一些能量被飛機反射回來,再被雷達捕獲,根據時間來推算距離和方位。如今,基于雷達的對飛機的追蹤在民用和非民用領域仍然有很多應用。多系統適配目標跟蹤工程