通常,遮擋可以分為三種情況:目標間遮擋、背景遮擋、自遮擋。對于目標之間的相互遮擋,可以選擇根據目標的位置和目標特征的先驗知識來處理這一問題。而對于場景結構的導致的部分遮擋此方法則難以判斷,因為難以辨認究竟是目標形狀發生變化還是發生遮擋。所以,處理遮擋問題的通用方法是用線性或非線性動態建模方法對運動目標進行,并在目標發生遮擋時,預測目標的可能位置,一直到目標重新出現時再修正它的位置。可以用卡爾曼濾波器來實現估計目標的位置,也可以用粒子濾波對目標做狀態估計。成都慧視光電技術有限公司推出基于全國產化RV1126板的高性能圖像跟蹤板卡。新疆目標跟蹤進貨價
在深度學習中,解決訓練數據不足常用的一個技巧是“預訓練-微調”(Pretraining-finetune),即大數據集上面預訓練模型,然后在小數據集上去微調權重。但是,在訓練數據極其稀少的時候(只有個位數的訓練圖片),這個技巧是無法奏效的。圖2展示了一個檢測模型預訓練過后,在單張訓練圖片上微調的過程:盡管訓練集上逐漸收斂,但是檢測器仍無法檢測出測試圖片中的物體。這反映出了“預訓練-微調”框架的泛化能力不足。利用SpeedDP經過大量的數據訓練后,機器就能夠精確檢測跟蹤圖像中的物體。電力應急目標跟蹤優勢慧視RK3399PRO圖像處理板能實現24小時、無間隙信息化監控。
之所以能產生這種可見運動或表觀運動,是因為物體以不同的速度在不同的方向上移動,或者是因為相機在移動(或者兩者都有)在很多應用程序中,跟蹤表觀運動都是極其重要的。它可用來追蹤運動中的物體,以測定它們的速度、判斷它們的目的地。對于手持攝像機拍攝的視頻,可以用這種方法消除抖動或減小抖動幅度,使視頻更加平穩。運動估值還可用于視頻編碼,用以壓縮視頻,便于傳輸和存儲。被跟蹤的運動可以是稀疏的(圖像的少數位置上有運動,稱為稀疏運動),也可以是稠密的(圖像的每個像素都有運動,稱為稠密運動)跟蹤視頻中的特征點從前面章節介紹的內容可以看出,根據特殊的點分析圖像,可以使計算機視覺算法更加實高效。
YOLO單卷積神經網絡在一次評價中直接從全圖中預測多個boundingboxes和類概率,在全圖上訓練并直接優化檢測性能,同時學習目標的泛化表示。然而,YOLO對邊界框預測施加了嚴格的空間約束,限制了模型可以預測的相鄰項目的數量。成群出現的小物件,如鳥類,對于此模型也同樣有問題。fasterR-CNN,一個由全深度CNN組成的單一統一對象識別網絡,提高了檢測的準確性和效率,同時減少了計算開銷。該模型集成了一種在區域方案微調之間交替的訓練方法,使得統一的、基于深度學習的目標識別系統能夠以接近實時的幀率運行,然后在保持固定目標的同時微調目標檢測。慧視AI圖像處理板是高精度識別的板卡。
2010年以前,目標跟蹤領域大部分采用一些經典的跟蹤方法,比如Meanshift、Particle Filter和Kalman Filter,以及基于特征點的光流算法等。Meanshift方法是一種基于概率密度分布的跟蹤方法,使目標的搜索一直沿著概率梯度上升的方向,迭代收斂到概率密度分布的局部峰值上。首先Meanshift會對目標進行建模,比如利用目標的顏色分布來描述目標,然后計算目標在下一幀圖像上的概率分布,從而迭代得到局部密集的區域。Meanshift適用于目標的色彩模型和背景差異比較大的情形,早期也用于人臉跟蹤。由于Meanshift方法的快速計算,它的很多改進方法也一直適用至今。目標跟蹤的板卡哪家做的好呀?人防目標跟蹤互惠互利
工程師以RK3588核心板為基礎進行定制開發,讓攝像頭更加智能高效,能夠輸出高清流的圖像視頻。新疆目標跟蹤進貨價
近年來,我國多地智慧城市建設取得較好的成效,諸多創新技術和解決方案得到廣泛應用。而在智慧停車方面,許多公共場所也開始逐步落地應用。一車一桿的系統,智能識別進出入車輛,控制車輛進出入,統計車位空缺數,在很大程度上能夠優化公共停車場的交通擁堵等問題,能夠提高安全和通行效率。智慧停車閘道裝有車牌識別的機箱,該機箱集攝像頭、圖像處理板、顯示屏、內存卡等設備于一體,其中圖像處理板內置車牌識別算法,在攝像頭獲取車牌照片后,板卡算法就能進行快速又高精度的信息識別,并上傳數據到后端控制中心,能夠有效控制車輛的合理出入,方面管理者優化管理。新疆目標跟蹤進貨價