YOLO單卷積神經(jīng)網(wǎng)絡(luò)在一次評(píng)價(jià)中直接從全圖中預(yù)測(cè)多個(gè)boundingboxes和類概率,在全圖上訓(xùn)練并直接優(yōu)化檢測(cè)性能,同時(shí)學(xué)習(xí)目標(biāo)的泛化表示。然而,YOLO對(duì)邊界框預(yù)測(cè)施加了嚴(yán)格的空間約束,限制了模型可以預(yù)測(cè)的相鄰項(xiàng)目的數(shù)量。成群出現(xiàn)的小物件,如鳥(niǎo)類,對(duì)于此模型也同樣有問(wèn)題。fasterR-CNN,一個(gè)由全深度CNN組成的單一統(tǒng)一對(duì)象識(shí)別網(wǎng)絡(luò),提高了檢測(cè)的準(zhǔn)確性和效率,同時(shí)減少了計(jì)算開(kāi)銷。該模型集成了一種在區(qū)域方案微調(diào)之間交替的訓(xùn)練方法,使得統(tǒng)一的、基于深度學(xué)習(xí)的目標(biāo)識(shí)別系統(tǒng)能夠以接近實(shí)時(shí)的幀率運(yùn)行,然后在保持固定目標(biāo)的同時(shí)微調(diào)目標(biāo)檢測(cè)。慧視RK3399圖像處理板能實(shí)現(xiàn)24小時(shí)、無(wú)間隙信息化監(jiān)控。專業(yè)目標(biāo)跟蹤產(chǎn)品
很多跟蹤方法都是對(duì)通用目標(biāo)的跟蹤,沒(méi)有目標(biāo)的類別先驗(yàn)。在實(shí)際應(yīng)用中,還有一個(gè)重要的跟蹤是特定物體的跟蹤,比如人臉跟蹤、手勢(shì)跟蹤和人體跟蹤等。特定物體的跟蹤與前面介紹的方法不同,它更多地依賴對(duì)物體訓(xùn)練特定的檢測(cè)器。人臉跟蹤由于它的明顯特征,它的跟蹤就主要由檢測(cè)來(lái)實(shí)現(xiàn),比如早期的Viola-Jones檢測(cè)框架和當(dāng)前利用深度學(xué)習(xí)的人臉檢測(cè)或人臉特征點(diǎn)檢測(cè)模型。手勢(shì)跟蹤在應(yīng)用主要集中在跟蹤特定的手型,比如跟蹤手掌或者拳頭。設(shè)定特定的手型可以方便地訓(xùn)練手掌或拳頭的檢測(cè)器。專業(yè)目標(biāo)跟蹤產(chǎn)品慧視RV1126圖像處理板能實(shí)現(xiàn)24小時(shí)、無(wú)間隙信息化監(jiān)控。
視覺(jué)跟蹤技術(shù)是計(jì)算機(jī)視覺(jué)領(lǐng)域(人工智能分支)的一個(gè)重要課題,有著重要的研究意義;且在導(dǎo)彈制導(dǎo)、視頻監(jiān)控、機(jī)器人視覺(jué)導(dǎo)航、人機(jī)交互、以及醫(yī)療診斷等許多方面有著廣泛的應(yīng)用前景。隨著研究人員不斷地深入研究,視覺(jué)目標(biāo)跟蹤在近十幾年里有了突破性的進(jìn)展,使得視覺(jué)跟蹤算法不只是局限于傳統(tǒng)的機(jī)器學(xué)習(xí)方法,更是結(jié)合了近些年人工智能熱潮—深度學(xué)習(xí)(神經(jīng)網(wǎng)絡(luò))和相關(guān)濾波器等方法,并取得了魯棒(robust)、精確、穩(wěn)定的結(jié)果。
基于特征匹配的跟蹤方法不考慮運(yùn)動(dòng)目標(biāo)的整體特征,通過(guò)有目的的提取序列圖像中的過(guò)零點(diǎn)、邊緣輪廓、線段等相關(guān)特征或是部分特性,并建立匹配模板,對(duì)目標(biāo)對(duì)象進(jìn)行特征匹配,達(dá)到對(duì)目標(biāo)對(duì)象跟蹤的目的。假定運(yùn)動(dòng)目標(biāo)可以由惟一的特征**表達(dá),搜索到該相應(yīng)的特征就認(rèn)為跟蹤上了運(yùn)動(dòng)目標(biāo)。除了用單一的特征來(lái)實(shí)現(xiàn)跟蹤外,還可以采用多個(gè)特征信息融合在一起作為跟蹤特征。該算法主要包括特征提取和特征匹配兩個(gè)方面。其中,特征提取指的是針對(duì)所包含的目標(biāo)對(duì)象的序列圖像選擇合適的目標(biāo)跟蹤特性。RK3588跟蹤板如何實(shí)現(xiàn)目標(biāo)的識(shí)別及跟蹤?
目標(biāo)跟蹤是在首幀中給定待跟蹤目標(biāo)的情況下,對(duì)目標(biāo)進(jìn)行特征提取,對(duì)感興趣區(qū)域進(jìn)行分析;然后在后續(xù)圖像中找到相似的特征和感興趣區(qū)域,并對(duì)目標(biāo)在下一幀中的位置進(jìn)行預(yù)測(cè)。作為計(jì)算機(jī)視覺(jué)領(lǐng)域的一個(gè)熱點(diǎn)研究方向,目標(biāo)跟蹤一直都是一項(xiàng)具有挑戰(zhàn)性的工作。目標(biāo)跟蹤技術(shù)在導(dǎo)彈制導(dǎo)、智能監(jiān)控系統(tǒng)、視頻檢索、無(wú)人駕駛、人機(jī)交互和工業(yè)機(jī)器人等領(lǐng)域具有重要的作用。從上世紀(jì)50年代目標(biāo)跟蹤的起源到現(xiàn)今,盡管已有大量的研究成果,但是在復(fù)雜條件下實(shí)現(xiàn)實(shí)時(shí)準(zhǔn)確的跟蹤依舊難以實(shí)現(xiàn)。慧視AI板卡能夠凸顯AI的智慧之能,變被動(dòng)為主動(dòng),提供多種能主動(dòng)預(yù)警的視頻分析和人臉識(shí)別黑白名單管理。人防目標(biāo)跟蹤聯(lián)系方式
RK3399PRO圖像處理板是我司自主研發(fā)的目標(biāo)跟蹤板,該板卡采用國(guó)產(chǎn)高性能CPU,搭載自研目標(biāo)跟蹤及跟蹤算法。專業(yè)目標(biāo)跟蹤產(chǎn)品
視覺(jué)目標(biāo)跟蹤是指在視頻圖像序列的各幀圖像中找到被跟蹤的目標(biāo)。基于區(qū)域的跟蹤的基本思想是通過(guò)圖像分割或預(yù)先人為確定,提取包含著運(yùn)動(dòng)目標(biāo)的運(yùn)動(dòng)變化的區(qū)域范圍作為匹配的目標(biāo)模板,然后把目標(biāo)模板與實(shí)時(shí)圖像在所有可能位置上進(jìn)行疊加,然后計(jì)算某種圖像相似性度量的相應(yīng)值,其比較大相似性相對(duì)應(yīng)的位置就是目標(biāo)的位置,Jorge等人提出的區(qū)域跟蹤算法不僅利用了分割結(jié)果來(lái)給跟蹤提供信息,同時(shí)也能利用跟蹤所提供的信息改善分割效果,把連續(xù)幀的目標(biāo)匹配起來(lái)跟蹤目標(biāo)。專業(yè)目標(biāo)跟蹤產(chǎn)品