提高鋰離子電池的安全性、避免熱失控的發(fā)生不僅需要從電池材料上做出改變,還需要結合電池配方設計、結構設計和電池組的熱管理設計上多管齊下。鋰離子電池熱失控嚴重威脅著使用者的生命還財產安全,提高鋰離子電池的安全性、避免熱失控的發(fā)生不僅需要從電池材料上做出改變,還需要結合電池配方設計、結構設計和電池組的熱管理設計上多管齊下,共同提高鋰電池熱穩(wěn)定性,減少熱失控發(fā)生的可能性。鋰離子電池的工作溫度范圍很窄,在15~45℃之間,如果溫度超過臨界水平,便會發(fā)生熱失控。鋰離子電池一旦發(fā)生熱失控,會引發(fā)停不下來的連鎖反應,溫度在幾毫秒內迅速上升,內部產熱遠高于散熱速率,電池內部積攢大量熱量,使電池變成氣體,導致電池起火和,并且?guī)缀醪荒芤猿R?guī)方式撲滅,直接威脅到用戶安全。
醋酸鋰對苯-甲醇體系混溶性的影響。上海無水醋酸鋰氯化鋰干燥
Yang等用電化學應變顯微鏡和原子力學顯微鏡原位地表征了納米和微米尺度下Li+的擴散并通過計算得到了局部的擴散系數(shù)。結果表明在外部偏壓下,Li+的移動與表面形貌的改變有密切關聯(lián),還實時觀察了充放電情況下電極表面形貌的變化。Li等采用溶膠-凝膠法合成了富鋰錳基層狀材料Li1.2Ni0.13Co0.13Mn0.54(BO4)0.75x (BO3)0.25xO2–3.75x,80周循環(huán)后保持300 mA·h/g的可逆比容量,且DSC數(shù)據(jù)證明熱穩(wěn)定性也有所提高,解釋為聚陰離子調控了富鋰材料的電子結構,導致M—O鍵減弱,O2p能帶降低,從而提高了O原子的穩(wěn)定性。電池級無水醋酸鋰用途乙酸鋰(Lithium acetate),也稱為醋酸鋰,分子式為CH3COOLi,分子量為65.99。
Prof. Xianluo Hu和Yingjie Zhu等人[5]成功的研發(fā)出一種新型羥基磷灰石超長納米線基耐高溫鋰電池隔膜,該電池隔膜除了具有柔韌性高、力學強度好、孔隙率高、電解液潤濕和吸附性能優(yōu)良的特點外,更重要的是熱穩(wěn)定性高、耐高溫、阻燃耐火,在700℃的高溫下仍可保持其結構完整性。采用羥基磷灰石超長納米線基耐高溫電池隔膜組裝的電池在150℃高溫環(huán)境中能夠保持正常工作狀態(tài),并點亮小燈泡,而采用PP隔膜組裝成的電池在150℃高溫下很快發(fā)生短路,可以有效提高鋰電池的工作溫度和安全性。
醋酸技術改造的重要創(chuàng)新和突破,一是提高了生產工序的反應效率和醋酸產品的質量。通過改變醋酸生產過程中主催化劑的結構形態(tài),在合成工序反應釜中添加鋰鹽或碘化鋰、醋酸鋰,進一步提高了催化體系穩(wěn)定性,同時有效促進產品質量提高。二是未完全反應原料實現(xiàn)循環(huán)利用,有效降低生產成本。通過在醋酸生產工序新增預分離塔,能夠洗滌回收催化劑銠絡合物、鋰鹽、碘化鋰、醋酸鋰、氫碘酸等有效成分。醋酸主要用于合成醋酸乙烯、醋酸纖維、**、醋酸酯、金屬醋酸鹽及鹵代醋酸等,是制藥、染料、農藥及其他有機合成的重要原料。此外,在照像藥品制造、醋酸纖維素、植物印染以及橡膠工業(yè)等方面也有***的用途。無水醋酸鋰的國內廠家。
為了提高鋰負極的循環(huán)穩(wěn)定性能需要對金屬鋰進行改性保護,改善鋰沉積行為,抑制鋰枝晶的產生。主要使用冰醋酸揮發(fā)氣體與鋰負極原位反應,在金屬鋰表面原位形成一層醋酸鋰得到CH3COOLi-Li負極。表面形成的醋酸鋰鈍化膜可以抑制鋰與電解液的反應,抑制循環(huán)過程中鋰枝晶的生長。組裝對稱鋰電池、鋰銅電池和鈷酸鋰全電池并對其進行電化學表征,均表明CH3COOLi-Li負極相比于純Li負極電池的循環(huán)穩(wěn)定性能得到明顯改善。CH3COOLi-Li負極的鋰銅電池循環(huán)100圈后Coulomb效率仍穩(wěn)定在97%以上,組裝的CHgCOOLi-Li/LiCoO2全電池循環(huán)1000圈容量保持率高達73.5%。無水醋酸鋰鋰離子電池用原料。發(fā)展無水醋酸鋰應用
無水醋酸鋰的的生產廠家。上海無水醋酸鋰氯化鋰干燥
南京航空航天大學張校剛、南京信息工程大學董升陽等合作開發(fā)了一種綠色低成本的乙酸鋰基“鹽包水”電解液,將電化學穩(wěn)定窗口拓寬到2.8V。分子動力學模擬表明與乙酸鋰稀溶液相比,“鹽包水”電解液中水之間的氫鍵網絡被打斷,且離子之間的相互作用明顯增強。這可能是乙酸鋰基水系電解液電化學穩(wěn)定窗口拓寬的主要原因之一。得益于寬的電化學穩(wěn)定窗口,使得在有機體系中具有超高儲鋰性能的Nb??W??O??(NbWO)負極可以在該水系電解液中穩(wěn)定工作。采用球差矯正掃描透射電子顯微鏡精確解析了NbWO的原子結構,明確了NbWO具有大的離子傳輸通道。即使在24mgcm?2的高負載量下,NbWO電極仍保持了較好的電化學性能。以NbWO為負極,匹配石墨烯正極構建的鋰離子電容具有較高的能量密度(42Wh/kg)、功率密度(20kW/kg)和極好的循環(huán)穩(wěn)定性(50000圈)。上海無水醋酸鋰氯化鋰干燥