麻省理工學院發(fā)現(xiàn)電解質(zhì)陰離子基團效應(yīng)可將鋰離子電池交換電流密度提升百倍據(jù)先進能源科技戰(zhàn)略情報研究中心9月2日消息,麻省理工學院Yet-MingChiang教授研究團隊發(fā)現(xiàn)電解質(zhì)陰離子基團效應(yīng)可將鋰離子電池交換電流密度提升百倍。團隊首先通過濕化學方法制備了鋰鈷氧復(fù)合電極(LiNi0.33Mn0.33Co0.33O2,NMC)復(fù)合塊體電極,隨后從塊體電極分離出單個NMC電極顆粒,置于不同的電解質(zhì)環(huán)境中,進行一系列的電化學性能測試。電化學阻抗譜和恒電位間隙滴定測試顯示,相比六氟磷酸鋰(LiPF6)電解質(zhì)電池,采用雙三氟甲烷磺酰亞胺鋰(LiTFSI)離子傳輸效率更高,其交換電流密度大幅提升,且隨充電電壓增加而增大,最大值提升了100倍。這為設(shè)計開發(fā)高性能的鋰電池電解質(zhì)提供了重要科學理論參考。相關(guān)研究成果發(fā)表在《NatureEnergy》。雙三氟甲烷磺酰亞胺鋰水分:小于100ppm(水分一般在40ppm左右)。2020年雙三氟甲烷磺酰亞胺鋰價格
雙三氟甲烷磺酰亞胺鋰:1.作為鋰電池有機電解質(zhì)鋰鹽LiN(CF3S02)2作為鋰電解質(zhì)鋰鹽,水分要小于100ppm,一般在40ppm左右,才可以使用。用作鋰離子電池有機電解質(zhì)鋰鹽,具有較高的電化學穩(wěn)定性和電導(dǎo)率。而且在較高的電壓下對鋁集流體沒有腐蝕作用。用EC/DMC配制成lmol/L電解質(zhì)溶液。電導(dǎo)率可達S/cm。在-30℃下電導(dǎo)率還在10-3S/cm以上。這對于***應(yīng)用極為重要。2.作反應(yīng)催化劑LiN(CF3S02)2:和它的同系列化合物MN(RsS02)2(其中,M為1價陽離子,如H+,U+,Na+等;Rf為CF3,C2F5,C3F7,C4F9等全氟烷基),是用于有機催化裂化、加氫裂化、催化重整、異構(gòu)化、烯烴水合、甲苯歧化、醇類脫水以及酰基化反應(yīng)等過程的路易斯酸催化劑。3.制備離子液體。 四川雙三氟甲烷磺酰亞胺鋰生產(chǎn)廠家采用雙三氟甲烷磺酰亞胺鋰(LiTFSI)離子傳輸效率更高,其交換電流密度大幅提升。
LiTFSI(雙三氟甲烷磺酰亞酰胺鋰)鋰鹽熱穩(wěn)定性優(yōu)異,但通常會腐蝕鋁箔。為解決這一問題,Matsumoto等將LiTFSI鋰鹽濃度提高,配制了1.8mol/LLiTFSIm(EC)∶m(DEC)=3:7電解液,使用鋁工作電極時其電化學窗口達到了4.5V。通過分析得到由于在高濃度電解液中,鋁箔表面形成一層氟化鋰LiF鈍化層,成功抑制了鋁箔的腐蝕。Wang等研究了高濃度的LiN(SO2F)2(LiFSA)/碳酸二甲酯(DMC)電解液體系,其可形成三維網(wǎng)絡(luò)狀結(jié)構(gòu),從而在5V電壓條件下有效阻止過渡金屬和鋁的溶解,高電壓石墨C/LiNi0.5Mn1.5O4電池具有優(yōu)異的循環(huán)性能。在10mol/LLiFSI-DMC高濃度電解液中,由于其可形成含氟量較高的界面保護層,在充電電壓達到4.6V時,經(jīng)過100次循環(huán)后,Li/NMC622電池保持了86%的初始放電容量。高濃度電解液具有高的抗氧化還原性,高載流子密度,可抑制鋁箔腐蝕,熱穩(wěn)定性好等優(yōu)點,具有應(yīng)用于高電壓電解液的潛力。然而其也存在不足,如電導(dǎo)率較低、成本較高等,如何提高電導(dǎo)率,降低成本,是推動高濃度電解液實用化進程的關(guān)鍵。
Borgel等研究了鎳錳酸鋰半電池(Li/LiNi0.5Mn1.5O4)在TFSI(雙三氟甲烷磺酰亞胺)基離子液體中的性能,相比于常規(guī)電解液,電池不可逆容量**降低。但將這些離子液體應(yīng)用在高倍率和低溫環(huán)境時,其性能還需要進一步的優(yōu)化。1mol/LLiNTf2-C4mpyrNTf2(雙三氟甲烷磺酰亞胺鋰/1-丁基-1-甲基吡咯烷鎓雙三氟甲磺酰亞胺)電解液用于Li/LiNi0.5Mn1.5O4電池,與電解液[1mol/LLiPF6j(EC)∶j(DEC)=1∶2]相比,電池放電容量相當,但庫侖效率有明顯的提高,且離子液體的阻燃性、安全性較優(yōu)。不足的地方是使用該離子液體后電池庫侖效率*約95%,容量衰減較快,因此庫侖效率還需提高,真正實現(xiàn)高效率、高容量保持率。為改善其不足,可將離子液體與常規(guī)溶劑作為共溶劑,提升鋰離子電池在高電壓下的性能。雖然離子液體可應(yīng)用在高電壓鋰離子電池,但是其高的黏度、低的電導(dǎo)率導(dǎo)致電池循環(huán)和倍率性能降低;其次,其浸潤性不好,致使與電極的相容性也較差;再者,離子液體熔點高,使得在低溫下的性能下降。離子液體真正實現(xiàn)應(yīng)用化還需更多的研究。雙三氟甲烷磺酰亞胺鋰市場地位。
斯坦福大學崔屹教授課題組設(shè)計了一種防火、超輕的固態(tài)聚合物電解質(zhì)(SSE)以提高鋰電池的安全性。該聚合物固態(tài)電解質(zhì)以多孔聚酰亞胺(PI)作為機械增強框架材料,添加阻燃劑(十溴二苯乙烷,DBDPE)和離子導(dǎo)電聚合物電解質(zhì)(聚環(huán)氧乙烷/雙三氟甲烷磺酰基鋰,PEO/LiTFSI)。聚合物固態(tài)電解質(zhì)由輕質(zhì)有機材料制成,具有可調(diào)節(jié)的膜厚度(10–25 μm),與傳統(tǒng)的隔膜/液體電解質(zhì)相比,具有更高的能量密度。該聚合物框架PI/DBDPE具有良好的熱穩(wěn)定性,在350 ℃時也沒有觀察到化學成分與形貌的變化。多孔PI/DBDPE膜的楊氏模量為440 MPa,比PEO/LiTFSI膜的楊氏模量(0.1 MPa)高出近4個數(shù)量級,證明了其具有優(yōu)異的機械強度。添加了離子導(dǎo)體PEO/LiTFSI之后,整個電解質(zhì)表現(xiàn)出了非常好的防火性能。制成的Li/Li 對稱電池循環(huán)了300小時不短路,LiFePO4/ Li半電池在60 °C下表現(xiàn)出高速率性能(在1 C下為131 mAh g-1)和循環(huán)性能(在C/2速率下300個循環(huán))。此外,該固態(tài)聚合物電解質(zhì)制成的軟包電池在火焰測試下仍然可以工作,體現(xiàn)出優(yōu)異的耐高溫特性。雙三氟甲烷磺酰亞胺鋰(LiTFSI)作為主鹽溶解于一種新型磷酸酯主溶劑。2020年雙三氟甲烷磺酰亞胺鋰價格多少錢一噸
多氟芳香環(huán)與雙三氟甲烷磺酰亞胺鋰進行混合形成呈近晶相的液晶電解質(zhì)。2020年雙三氟甲烷磺酰亞胺鋰價格
將具備優(yōu)良化學穩(wěn)定性及高電導(dǎo)率的雙三氟甲烷磺酰亞胺鋰(LiTFSI)溶于1-乙基-3-甲基咪唑雙三氟甲磺酰亞胺鹽。(EMIM-TFSI)離子液體中制成LiTFSI-EMIM-TFSI電解液加入環(huán)氧乙烯基酯樹脂(VER)中對其進行改性。結(jié)果表明,添加了上述電解液后的鋰離子電解液/環(huán)氧,乙烯基酯樹脂(LiTFSI-EMIM-TFSI/VER)體系可通過FTIR檢測到離子液體的特征吸收峰。隨著電解液含量的增加,LiTFSI-EMIIM-TFSI/VER體系的孔隙率逐漸增大,溝壑與片層結(jié)構(gòu)逐漸增多。這一變化有利于鋰離子的傳導(dǎo),提高體系的電學性能,同時可在一定程度上改善樹脂的塑性和韌性提高LiTFSI-EMIM-TFSI/VER體系的力學性能。在本實驗中,當電解液含量為40wt%時,LiTFSI-EMIM-TFSI/VER體系多功能性得以比較好地實現(xiàn)。2020年雙三氟甲烷磺酰亞胺鋰價格