雙(三氟甲磺酰)亞胺鋰,通常簡稱為LiTFSI,是一種親水鹽,化學式為LiC2F6NO4S2。它是鋰離子電池電解質中常用的鋰離子源,是一種比常用的六氟磷酸鋰更安全的替代品。因為它在水中有很高的溶解度(>21m),LiTFSI已被用作水-鹽電解質中的鋰鹽,用于水性鋰離子電池。2020年,全球雙三氟甲磺酰亞胺鋰溶液市場規模達到了xx百萬美元,預計2026年可以達到xx百萬美元,年復合增長率(CAGR)為xx%(2021-2027)。中國市場規模增長快速,預計將由2020年的XX百萬美元增長到2027年的XX百萬美元,年復合增長率為XX%(2021-2027)。雙三氟甲烷磺酰亞胺鋰用作鋰離子電池有機電解質鋰鹽,具有較高的電化學穩定性和電導率。寧夏節能雙三氟甲烷磺酰亞胺鋰
推動醫藥企業智能化發展。引導企業創新發展理念,打造“智能制造+綠色制造+共享平臺”新商業模式,構建“共享智能工廠”新生態。推動裝備制造發展。發展黑土地保護性耕作、秸稈還田收貯、收割機、深松機、整地機等農業機械,以及設施農業、畜禽屠宰等農牧及加工機械,打造農機裝備產業鏈,發展創新平臺,研發裝備。推動化工新材料創新發展。發展氯磺酰異氰酸酯鋰電池電解液新材料,推進雙氟磺酰亞胺鋰(LiFSI)及雙三氟甲烷磺酰亞胺鋰(LiTFSI)國產化,提升國際競爭力。推動冶金建材業綠色化發展。重視綠色制造,推進產品全生命周期的綠色管理進程,推進金鋼鋼鐵低碳非高爐煉鐵改造,發展綠色低碳冶金建材產業。廣西電池雙三氟甲烷磺酰亞胺鋰雙三氟甲烷磺酰亞胺鋰作為鋰電解質鋰鹽,水分要小于100ppm,一般在40ppm左右,才可以使用。
利用簡單的溶劑揮發法將聚環氧乙烷(PEO)/雙三氟甲烷磺酰亞胺鋰(LiTFSI)聚合物電解質填充至聚乙烯隔膜的孔道內,制備了厚度*為7.5μm的超薄復合聚合物電解質。作者采用價廉易得、高力學性能、高孔隙率的電池隔膜作為支撐體,保證了超薄固態電解質的力學強度、防止全固態電池在組裝、使用過程中發生內短路。采用該超薄電解質可***減小全固態電池的歐姆阻抗、極化現象,大幅提高全固態電池的電化學性能和能量密度。結果表明,采用該超薄固態電解質的全固態電池能夠表現出優異的循環穩定性,LiFeO4電池在60oC可以10C速率快充,在30oC下的比容量可達135 mAh g-1。該固態電解質與高比能正極材料(如硫)或負極材料(如MoS2)組裝成全固態鋰金屬電池可穩定循環。該研究工作制備的簡單、高效且可量產的聚合物電解質有望推動鋰金屬電池的商業化進程。
雙三氟甲烷磺酰亞胺鋰為白色結晶或粉末,可用作鋰離子電池有機電解質鋰鹽,具有較高的電化學穩定性和電導率。用途:雙三氟甲基磺酰亞胺鋰可用于制備鋰電池的電解質以及新型稀土路易斯酸催化劑;用于通過對應的三氟甲基磺酸鹽的陰離子置換反應制備手性咪唑鎓鹽。本品是重要的含氟有Chemicalbook機離子化合物,其應用在二次鋰電池、超級電容器。以及鋁電解電容器等清潔能源器件、高性能非水電解質材料、以及新型高效催化劑等領域,均具有重要的產業化應用價值。1.鋰電池上 2.離子液體 3.抗靜電 4.醫藥上(這個用途少)用于制備鋰電池的電解質以及新型稀土路易斯酸催化劑;用于通過對應的三氟甲基磺酸鹽的陰離子置換反應制備手性咪唑鎓鹽雙三氟甲烷磺酰亞胺鋰外觀: 白色結晶或粉末。
LiTFSI(雙三氟甲烷磺酰亞酰胺鋰)鋰鹽熱穩定性優異,但通常會腐蝕鋁箔。為解決這一問題,Matsumoto等將LiTFSI鋰鹽濃度提高,配制了1.8mol/LLiTFSIm(EC)∶m(DEC)=3:7電解液,使用鋁工作電極時其電化學窗口達到了4.5V。通過分析得到由于在高濃度電解液中,鋁箔表面形成一層氟化鋰LiF鈍化層,成功抑制了鋁箔的腐蝕。Wang等研究了高濃度的LiN(SO2F)2(LiFSA)/碳酸二甲酯(DMC)電解液體系,其可形成三維網絡狀結構,從而在5V電壓條件下有效阻止過渡金屬和鋁的溶解,高電壓石墨C/LiNi0.5Mn1.5O4電池具有優異的循環性能。在10mol/LLiFSI-DMC高濃度電解液中,由于其可形成含氟量較高的界面保護層,在充電電壓達到4.6V時,經過100次循環后,Li/NMC622電池保持了86%的初始放電容量。高濃度電解液具有高的抗氧化還原性,高載流子密度,可抑制鋁箔腐蝕,熱穩定性好等優點,具有應用于高電壓電解液的潛力。然而其也存在不足,如電導率較低、成本較高等,如何提高電導率,降低成本,是推動高濃度電解液實用化進程的關鍵。雙三氟甲烷磺酰亞胺鋰主要使用范圍。回收雙三氟甲烷磺酰亞胺鋰訂制價格
雙三氟甲烷磺酰亞胺鋰水分:小于100ppm(水分一般在40ppm左右)。寧夏節能雙三氟甲烷磺酰亞胺鋰
尖晶石型錳酸鋰(LiMn2O4)正極作為一種主流的水系鋰電池正極材料被***用于水系鋰離子電池,研究表明其電化學性能高度依賴于錳酸鋰材料自身化學組分、顆粒尺寸、晶體結構和形貌等材料屬性。本文針對性選取了LiMn2O4、鋁摻雜LiAlxMn2-xO4、富鋰Li1+xMn2-xO4三種典型的尖晶石型LiMn2O4,通過一系列分析、表征手段研究循環前后其晶體結構、材料形貌以及化學組分的變化,探究在高鹽濃度Water-in-salt (WIS)水系電解液(21 mol/kg的雙三氟甲烷磺酰亞胺鋰(LiTFSI)溶液)中三種材料電化學性能不同的原因。研究發現充放電時未經處理的尖晶石LiMn2O4因為嚴重的Mn溶解和Jahn-Teller效應產生了不可逆的相變和形貌變化,容量衰減嚴重,循環性能差;鋁摻雜一定程度上抑制了尖晶石錳酸鋰的Jahn-Teller效應,但不能完全解決Mn溶解和晶格畸變問題,也存在較嚴重的容量衰減;富鋰Li1+xMn2-xO4可以有效抑制尖晶石錳酸鋰在水系電解液中的Mn溶解和Jahn-Teller畸變,晶體結構穩定,綜合電化學性能好,適合用于水系鋰離子電池,提高其整體電化學性能。寧夏節能雙三氟甲烷磺酰亞胺鋰