過冷水蓄冰,原理:通過把普通淡水冷卻到低于0℃的液態過冷狀態,再經超聲波促晶生成流態化冰漿的技術,乙二醇溶液是處于亞穩定狀態,溶液進出制冰換熱器時溫差很小,當達到一定的過冷時會自發出現成核現象。其主要是讓水在換熱器中降溫到0℃以下的狀態而不發生相變,在過冷卻解除器中消除過冷狀態,低于0℃的水通過相變成為0℃C的冰,也有歸納到冰晶式蓄冷方式的。系統原理圖如下:該系統冷卻速度要快,水流高,易堵塞板換等缺點,應用較少。冷卻過程中,冷卻水通過冷卻設備將熱量帶走,使室內溫度降低。廣西機房動態冰蓄冷廠家
建議廠家進一步提供冰晶式蓄冷技術風險控制的具體做法與實際項目的運營數據,并建議業主方考察具體項目案例并與物業管理方進行深度交流。動態冰蓄冷空調系統采用制冰機作為制冷設備,保溫水箱作為蓄冰設備,制冷機安裝在儲冰罐的上方,制冷劑作為蒸發器進入多個平行板,循環水泵不斷將蓄冰槽中的水抽到蒸發器頂部,并向下噴射,在蒸發器的表面上形成薄冰層,當冰層達到一定厚度時,制冰設備中的四通換向閥切換,使壓縮機的廢氣直接進入蒸發器的加熱板,冰塊脫落,冰蓄冷空調系統正常運行后,內部循環水泵將蓄冰槽中的水輸送到板冰機蒸發器頂部的噴頭,水均勻地灑在板冰機表面,蒸發器中的制冷劑進行熱交換,一部分水在板式制冰機的蒸發器上結冰,未結冰的水落入蓄冰槽,再次循環。中山速凍庫動態冰蓄冷裝置動態冰蓄冷可以通過冷熱儲能系統實現能源的平衡調節。
高效一次側穩態控制技術,精確控制蓄冷槽回水溫度,確保蓄、放冷效率高于95%。通過對末端負荷的動態追蹤和二次側循環水的溫度補償,既保證了末端供冷品質,又徹底杜絕了冷源的浪費。高效群控技術,實現對冷源端和末端的集中耦合協調管控,較大限度減少或消除冷源主機、水泵、風機等耗能設備“大馬拉小車”的低效運行點。針對蓄冷中間空調系統的負荷預測技術,智能化自動制定全天放冷計劃,較大限度避開高峰電價時段用電,并根據全年不同季節自動調整,實現用戶運行費用的較低化。
冰蓄冷系統主要利用水與冰的相變潛熱(334.4kJ/kg)進行蓄冷和釋冷。冰蓄冷系統從制冷系統構成上可分為直接蒸發式和間接載冷劑式。直接蒸發式是指制冷系統的蒸發器直接作用于制冰元件,如盤管外結冰、制冰滑落式等;間接載冷劑式,是指利用制冷系統的蒸發器冷卻載冷劑,再用載冷劑進行制冰。根據制冰方式的不同,可分為靜態型制冰和動態型制冰兩種。靜態型制冰方式,冰的制備和融化在同一位置進行,蓄冷設備和制冰部件為一體結構,具體形式有冰盤管式、完全凍結式、密封件式等多種形式;動態型制冰方式,冰的制備和融化不在同一位置進行,制冰機和蓄冰槽相對單獨,如冰片滑落式和冰晶式系統。動態冰蓄冷可以減少電力系統的負荷峰值,提高電網的穩定性。
冰晶式蓄冰,原理:通過將融入水中的抗凍劑(一般為乙二醇或丙二醇)設定在合適的比例,將此流體通過制冰主機的蒸發器,直接在流體內形成小的冰晶(-1℃左右),然后再進入儲冰槽內,利用冰較水密度小,冰晶留在罐體上部,通過多次循環,來實現蓄冰;釋冰時載冷劑從蓄冰罐體上部淋下,下部將水抽出,通過循環于換熱器'二次側為空調末端)和槽內的載冷劑,將冷量釋放到空調末端,從而形成一個完整的蓄冷、釋冷的過程。該系統技術較為先進,但控制復雜,存在隱患,技術品牌少,應用案例少。動態冰蓄冷可以與地源熱泵等技術相結合,實現能源的互補利用。中山速凍庫動態冰蓄冷裝置
動態冰蓄冷可以減少對水資源的競爭,改善水資源的分配公平性。廣西機房動態冰蓄冷廠家
過冷卻熱交換器可以采用殼管式、套管式、板式等多種形式的換熱器。為了防止過冷水在換熱器內結冰,換熱器內表面需要進行特殊涂層處理,同時對換熱器內部的流場特性也有很高的要求,否則很難獲得足夠大的過冷度,以及避免堵塞。過冷卻解除技術也包括多種,如機械方法、熱方法、超聲波方法等。過冷水式動態制冰技術的系統控制要求非常高,這也是該技術走向實用化所面臨的一大技術難點。由于冰漿中固液兩相存在密度差,在蓄冰槽中可以循環抽取出冰漿中分離出來的液態水,再送回制冰系統中生成冰漿,由此可使蓄冰槽內的冰漿固相含量(IPF)達到60%以上。廣西機房動態冰蓄冷廠家