有機朗肯循環(ORC)在中低溫熱能回收領域有著普遍的應用,但在中低溫范圍內很多熱源工況存在較強的波動,如太陽熱能,工業或內燃機煙氣余熱等。ORC系統在變工況熱源驅動下可能會產生如下問題:系統吸熱過多導致系統內溫度、壓力過高,工質裂解;系統吸熱不足而導致膨脹機液擊,系統無法正常運行。因此,研究ORC系統在變工況熱源下的動態運行情況變得十分重要。以ORC系統在變工況熱源下的動態特性為主要研究對象,采用實驗研究與仿真模擬相結合的研究方法。ORC技術不但用于水泥工廠的余熱發電廠,也用于其他工業。江西230kwORC低溫發電機組
研究了不同熱源溫度下ORC系統的變工況性能,分析了不同熱源溫度下固定透平效率與動態透平效率下ORC系統的性能。得出如下結論:透平效率隨蒸發溫度的降低或者冷凝溫度的升高而增大,在不同運行參數及不同工質條件下,透平效率差異較大,更大可達0.151。采用動態透平效率后,系統凈輸出功增加趨勢減緩,且工質排序發生了改變。在給定熱源條件下,選取不同的透平效率,更優工質及更佳運行參數也不同。對于固定透平效率ORC系統,若側重于系統產品?單價,則異戊烷為更優,若側重于系統單位凈輸出功投資成本,則戊烷為更優工質,更佳蒸發溫度與冷凝溫度分別為377.10K和323.70K。而對于動態透平ORC系統而言,戊烷為更優工質,更佳蒸發溫度與冷凝溫度則分別為374.05K和324.34K。ORC低溫發電機組制作ORC余熱發電技術改善環境問題。
有機朗肯循環是一種新型環保型的發電技術,由蒸發器、膨脹機、冷凝器和工質泵組成,如下圖所示。有機朗肯循環的工質是低沸點、高蒸汽壓的有機工質,工質在蒸發器中從低溫熱源中吸收熱量產生有機蒸氣,進而推動膨脹機旋轉,帶動發電機發電,在膨脹機做完功的乏氣進入冷凝器中重新冷卻為液體,由工質泵打入蒸發器,完成一個循環。它可利用的低品位能主要有:工業余熱、地熱、太陽能、生物質能、液化天然氣的冷能回收。有機朗肯循環發電技術與常規水蒸汽朗肯循環發電技術相比,具有如下優點:效率高,系統構成簡單;不需設置真空維持系統;通流面積較小,透平尺寸小;使用干流體時,余熱鍋爐中不必設置過熱段,工質蒸汽直接以飽和氣體進透平膨脹做功;可實現遠程控制,運行成本很低;單機容量范圍廣;系統部件、設備可實現標準模塊化生產,降低了制造成本。
在有機朗肯循環發電設備中,低壓液態有機工質經過工質泵增壓后進入蒸發器吸收熱量轉變為高溫高壓蒸汽;之后,高溫高壓有機工質蒸汽推動膨脹機發電機進行發電,產生電量輸出;膨脹機出口的低壓過熱蒸汽進入冷凝器,向低溫熱源放熱而被冷凝為液態,如此往復循環。ORC發電設備與其他熱機循環相比有諸多明顯的優點。首先,與其他熱機循環相比,ORC對低品位余熱的利用率更高;其次,使用ORC發電設備的尺寸和重量小;此外,有ORC比其他熱電循環的運行維護成本更低。使用有機朗肯循環成為回收低品位熱能的有效技術途徑。
ORC應用領域及經濟性分析:地熱發電,地熱溫度一般在幾十度到300度之間。實際上ORC可利用的溫度必須在80度以上,低于這個溫度則由于熱電轉換效率過低而導致經濟性很差。地熱開發中的勘探成本包括打生產井和回灌井,占總投資成本的比例很高,更高可達70%。此外,由于發電過程中地熱水的抽取和回灌耗能大,水泵及工質泵的耗電量要占到總輸出功率的30%-50%。當然,較高溫度(150℃以上)的地熱源也可使用熱電聯產方式:冷凝溫度設置高一點,比如60℃,ORC系統出來的冷卻水即可用于區域供熱。在這種情況下,通過放棄一部分發電效率來換取整體回收效率的提高。有機朗肯循環發電技術系統構成簡單。江西230kwORC低溫發電機組
ORC能確保余熱發電過程的可靠及經濟運行。江西230kwORC低溫發電機組
有機朗肯循環發電技術是在朗肯循環的基礎上,采用低沸點的有機物作為循環工質,從溫度相對較低熱源吸收熱量,然后膨脹做功從而帶動發電機發電.與傳統的使用水蒸汽作為工質的發電技術相比,該技術能夠有效地把低品位的熱能轉化為高品位的電能,并具有系統結構簡單,發電過程安全可靠等優勢,在工業余熱的回收,地熱能,太陽能等新能源的開發利用領域具有較大的前景。有機朗肯循環在回收低品位熱能具有很多有點,主要是:在回收中低品位熱能時效率高、結構簡單、工作壓力對密封要求低、采用新型工質的有機朗肯循環對環境友好等特點,因此有機朗肯循環被認為是一項切實可行的綠色能源技術。高等的余熱發電過程控制系統能確保余熱發電過程的安全、可靠及經濟運行。有機朗肯循環過程具有多變量強耦合、非線性和不確定性等特點,所以有必要選擇一種先進的控制算法來提高余熱發電過程的性能。江西230kwORC低溫發電機組