封裝金屬基復合材料的增強體有數種,SiC因為它具有優良的熱性能,用作顆粒磨料技術成熟,價格相對較低;另一方面,顆粒增強體材料具有各向同性,**有利于實現凈成形。據兩相比例或復合材料的熱處理狀態,可對材料熱物理與力學性能進行設計,從而AlSiC特性主要取決于SiC的體積分數(含量)及分布和粒度大小,以及Al合金成份。依滿足芯片封裝多方面的性能要求。其中,SiC體積分數尤為重要,實際應用時,AlSiC與芯片或陶瓷基體直接接觸,要求CTE盡可能匹配,為此SiC體積百分數vol通常為50%-75%。因鋁碳化硅具有熱導率高、熱膨脹系數低(熱膨脹系數同芯片材料相近),有效減少芯片和電路開裂的幾率。新型鋁碳化硅聯系方式
高體分鋁碳化硅是一種新型的高溫材料,具有優異的耐磨性和耐高溫性能。該材料主要由鋁、碳和硅三種元素組成,其中鋁的含量較高,達到了70%以上。高體分鋁碳化硅的制備過程較為復雜,需要采用高溫熱處理技術。該材料的主要應用領域包括航空航天、汽車制造、機械制造等高溫環境下的領域。高體分鋁碳化硅具有優異的耐腐蝕性能,可以在酸堿等腐蝕性環境下長期使用。該材料的熱導率較高,可以有效地將熱量傳遞出去,保證設備的正常運行。高體分鋁碳化硅的硬度較高,可以有效地抵抗磨損和劃傷,延長設備的使用壽命。出口鋁碳化硅價格查詢高體分鋁碳化硅生產工藝流程多采用真空壓力浸滲法。
AlSiC封裝材料產業化引起國內科研院所、大學等單位的***重視,積極著手研發其凈成形工藝,部分單位研制成功樣品,為AlSiC工業化生產積累經驗, 離規模化生產尚有一定距離,存在成本高、SiC體積含量不高、低粘度、55% ~ 75%高體積分材料的制備與漿粒原位固化技術等問題。我們公司采用創新型制備工藝,可制備50%-75%體分的鋁碳化硅產品,在碳化硅預制件制備過程中,區別于氧化燒結法,所制備的碳化硅預制件無二氧化硅,對復合材料的熱導率無抑制作用,極大的提高了復合材料的熱導率,且極大低降低了加工成本。
5、鋁碳化硅材料制機械加工技術介紹:
鋁碳化硅材料,尤其是高體分鋁碳化硅機械加工是產品制造中的難點環節,主要體現在鋁碳化硅的高耐磨,以及加工周期長等方面。
(1)、傳統機械加工技術:SiC增強體顆粒比常用的刀具(如高速鋼刀具和硬質合金刀具)的硬度高的多,在機械加工的過程中會引起劇烈的刀具磨損。PCD金剛石刀具雖然比增強體顆粒的硬度高,但硬度值相差不大,在切削加工高體分的顆粒增強AlSiC復合材料時仍然會快速磨損,且PCD金剛石刀具成本更高。眾多研究表明,隨著SiC含量的增大(13%~70%),可切削性越來越差,加工效率隨之降低,生產成本快速增加。若以45#鋼的切削性能為1計量,此種材料的切削性能*為0.05~0.3。因此,復合材料的難加工性和昂貴的加工成本限制了AlSiC復合材料的廣泛應用。 杭州陶飛侖新材料有限公司可生產大尺寸的鋁碳化硅結構件。
真空壓力浸滲法
工藝流程;多孔SiC陶瓷制備—模具裝配—盛鋁坩堝裝爐—抽真空、升溫、浸滲—工裝拆解—鋁碳化硅熱處理—機加(—表面處理)
工藝設備:真空壓力浸滲爐
工藝優勢:1、可實現近凈成型加工,尤其是復雜的零件;2、組織致密度高,材料性能好;3、相對于粉末冶金,其工藝過程易于控制。
工藝不足:1、對成型設備要求高;2、受限于設備尺寸,制造大尺寸零件困難;3、組織易粗大。
適應性:高體分鋁碳化硅、中體分鋁碳化硅的應用。 鋁碳化硅已經應用于玉兔號行走裝置。新型鋁碳化硅聯系方式
鋁碳化硅具有高比剛度、比強度、高尺寸穩定性、低熱膨脹系數、高耐磨、耐腐蝕等優異性能。新型鋁碳化硅聯系方式
鋁碳化硅是目前金屬基復合材料中常見、重要的材料之一。鋁碳化硅是一種顆粒增強金屬基復合材料,采用Al合金作基體,按設計要求,以一定形式、比例和分布狀態,用SiC顆粒作增強體,構成有明顯界面的多組相復合材料,兼具單一金屬不具備的綜合優越性能。鋁碳化硅研發較早,理論描述較為完善,其主要分類一般按照碳化硅體積含量可分為高體分鋁碳化硅(SiC體積比55%-75%)、中體分鋁碳化硅(SiC體積比35%-55%)、低體分鋁碳化硅(SiC體積比5%-35%)。新型鋁碳化硅聯系方式
杭州陶飛侖新材料有限公司在同行業領域中,一直處在一個不斷銳意進取,不斷制造創新的市場高度,多年以來致力于發展富有創新價值理念的產品標準,在浙江省等地區的電子元器件中始終保持良好的商業口碑,成績讓我們喜悅,但不會讓我們止步,殘酷的市場磨煉了我們堅強不屈的意志,和諧溫馨的工作環境,富有營養的公司土壤滋養著我們不斷開拓創新,勇于進取的無限潛力,杭州陶飛侖新材料供應攜手大家一起走向共同輝煌的未來,回首過去,我們不會因為取得了一點點成績而沾沾自喜,相反的是面對競爭越來越激烈的市場氛圍,我們更要明確自己的不足,做好迎接新挑戰的準備,要不畏困難,激流勇進,以一個更嶄新的精神面貌迎接大家,共同走向輝煌回來!