添加造孔劑法:
添加造孔劑法是指在原料中添加造孔劑,利用造孔劑在坯體中占據一定的空間,然后在升溫或燒結過程中,使造孔劑燃盡或揮發而在陶瓷體中留下孔隙來制備多孔陶瓷。其工藝與普通陶瓷工藝相似,關鍵在于造孔劑種類和用量的選擇,以及在基料中的均勻分布性。
優點:采用不同的成型方法可制得形狀復雜、氣孔結構各異的制品,工藝過程簡單,添加劑少,成本較低;缺點:難以制取高氣孔率制品,氣孔分布均勻性較差,對造孔劑的分散性要求比較高等。 在骨料中加入相同組分的微細顆粒及一些添加劑,利用微細顆粒易于燒結的特點,在一定溫度下將大顆粒連起來。湖北大規模碳化硅預制件結構設計
生物材料中的微觀孔隙結構與人工合成材料中的孔隙結構存在很大差異,由于其獨特的結構,以生物體作為模板并制備出與其結構相似的多孔陶瓷材料受到了普遍關注。生物模板法與有機泡沫浸漬法有異曲同工之妙,有機泡沫浸漬法是用人造海綿為模板,生物模板法是用自然生物為模板。生物模板法制備多孔碳化硅陶瓷具有工藝簡單及成本低廉的優點,可以制備具有復雜形狀的陶瓷,并且能夠很大程度地復制天然生物材料的結構。但是,生物模板在高溫炭化過程中易開裂,對多孔碳化硅陶瓷的力學性能有很大影響,并且所制備多孔碳化硅陶瓷的孔結構主要取決于生物模板自身的組織結構,可設計性較差;此外,該方法還存在著SiC轉化效率相對較低,SiC反應層易脫落,制備周期長等缺點。安徽使用碳化硅預制件分類杭州陶飛侖新材料公司生產的多孔陶瓷結構件不含對復合材料性能有抑制作用的雜質。
杭州陶飛侖新材料有限公司生產碳化硅多孔陶瓷預制體解決了現有制備工藝制備的碳化硅陶瓷預制體的強度低、結構不均一及碳化硅的體積分數低的技術問題。碳化硅多孔陶瓷預制體研制過程中參考的國家標準GJB/5443-2005高體積分數碳化硅顆粒/鋁基復合材料規范GB/T1965多孔陶瓷彎曲強度試驗方法------GB/T1965-1966GB/T1966多孔陶瓷顯氣孔率、容重試驗方法GB/T1967多孔陶瓷孔道直徑試驗方法GB/T1969多孔陶瓷耐酸、堿腐蝕性能試驗方法---GB/T1970-1996。
添加造孔劑法制備多孔碳化硅陶瓷通過將造孔劑加入碳化硅粉末或前驅體中,再通過后續的工藝將造孔劑除去,這樣原本造孔劑所占據的位置便形成孔隙,之后再加熱燒結形成多孔陶瓷。因此,改變造孔劑的種類及添加量可以很方便地控制多孔陶瓷成品的孔率、孔隙形貌和孔徑及分布。造孔劑的種類非常***,包括天然或合成有機高分子、液體、鹽類、陶瓷或其他粉末等。不同的造孔劑去除工藝各不相同,有機高分子造孔劑通常采用加熱分解的方式去除,液體造孔劑則可以通過結晶升華去除,鹽類通過用水浸濾去除,陶瓷粉末則通過適當的溶液浸濾去除。杭州陶飛侖新材料有限公司生產的碳化硅陶瓷預制體開氣孔率超過99.7%以上。
熱工材料主要用作隔熱材料和換熱器隔熱材料是利用多孔陶瓷的高孔隙度(主要是閉孔)的隔熱作用換熱器則利用其巨大的孔隙度、大的熱交換面積,同時又具備耐熱耐蝕不污染等特性。
復合材料骨架材料SiC由于具有密度低、強度高和導熱性好等特點,使其成為一種常用的金屬基復合材料增強相。LI等研究發現,在含相同體積分數SiC時,以三維連續多孔SiC作為骨架制備的SiC/Al復合材料,其各項性能均優于以粉末SiC作為骨架制備的SiC/Al復合材料。 坯體燒結工藝曲線設計主要是根據坯體中所添加的造孔劑、粘結劑等物質的熔點進行設計。湖北標準碳化硅預制件好選擇
杭州陶飛侖通過仿真模擬軟件模擬鋁碳化硅鑄件成型工藝參數與碳化硅陶瓷預制體強度之間的關系。湖北大規模碳化硅預制件結構設計
SiC因為具備低熱膨脹系數、高熱導率、優異的高溫化學、力學穩定性及高的水通量、生物兼容性而在陶瓷膜的發展過程中受到***關注。由于SiC是共價化合物,純SiC需要在2000℃左右才能完成燒結,這種制備方法燒結溫度過高,在實際生產中常通過添加低溫燒結助劑的方式來有效降低其燒結溫度。高溫燒結會產生二氧化硅玻璃相,對復合材料的導熱率有抑制影響,杭州陶飛侖新材料有限公司研究生產的鋁碳化硅復合材料,所采用的碳化硅多孔陶瓷預制件是采用的新型工藝,無二氧化硅玻璃相的產生。湖北大規模碳化硅預制件結構設計
杭州陶飛侖新材料有限公司主要經營范圍是電子元器件,擁有一支專業技術團隊和良好的市場口碑。公司自成立以來,以質量為發展,讓匠心彌散在每個細節,公司旗下鋁碳化硅,鋁碳化硼,銅碳化硅,碳化硅陶瓷深受客戶的喜愛。公司將不斷增強企業重點競爭力,努力學習行業知識,遵守行業規范,植根于電子元器件行業的發展。陶飛侖新材料秉承“客戶為尊、服務為榮、創意為先、技術為實”的經營理念,全力打造公司的重點競爭力。