鋁基碳化硅(AlSiC)顆粒增強復合材料,因其具有高比強度和比剛度、低熱膨脹系數、低密度、高微屈服強度、良好的尺寸穩定性、導熱性以及耐磨、耐疲勞等優異的力學性能和物理性能,被用于電子封裝構件材料,在大功率率IGBT 散熱基板、LED封裝照明、航空航天等**領域以及民用信息相控陣天線T/R模塊、大功率微波產品以及宇航電源熱沉載體、殼體中被廣泛應用。高體分SiCp/Al復合材料中主要采用焊接的方式與器件連接,基體材料由于碳化硅顆粒的存在,導致其表面潤濕性能較差,無法滿足焊接功能要求,因此必須在材料表面制備可焊金屬鍍覆層。鋁碳化硅已經應用于豐田發動機缸體。湖北標準鋁碳化硅方法
除用作慣性器件外,光學/儀表級鋁基碳化硅還可替代鈹材、微晶玻璃、石英玻璃等用作反射鏡鏡坯。例如,美國已采用碳化硅顆粒增強鋁基復合材料制成了超輕空間望遠鏡的主反射鏡和次反射鏡,主鏡直徑為0.3m。反射鏡面帶有拋光的化學鍍鎳層,鎳反射層與鋁基復合材料基材結合良好、膨脹也十分匹配。在(230-340)K之間進行320次循環后,鎳反射層仍能保持1/10可見光波長的平面度。由于結構的改進,鋁碳化硅反射鏡比傳統玻璃反射鏡輕50%以上。由于多處采用了新材料。使得整個空間望遠鏡重量*為4.54kg。湖南鋁碳化硅檢測技術高體分鋁碳化硅復合材料具有強度高、高導熱、低熱膨脹系數等優異性能。
鋁碳化硅研發較早,理論描述較為完善,其主要分類一般按照碳化硅體積含量可分為高體分鋁碳化硅(SiC體積比55%-75%)、中體分鋁碳化硅(SiC體積比35%-55%)、低體分鋁碳化硅(SiC體積比5%-35%)。從產業化趨勢看,AlSiC可實現低成本的、無需進一步加工的凈成形(net-shape )或需少量加工的近凈成形制造,還能與高散熱材料(金剛石、高熱傳導石墨等)的經濟性并存集成,滿足:大批量倒裝芯片封裝微波電路模塊光電封裝所需材料的熱穩定性及散溫度均勻性要求,同時也是大功率晶體管絕緣柵雙極晶體管(IGBT)等器件的推薦封裝材料,提供良好的熱循環及可靠性。
鋁碳化硅制備技術介紹:
1、鋁碳化硅材料成型技術應具備的條件:
鋁碳化硅制備工藝種類較多,包含粉末冶金法、攪拌鑄造法、真空壓力浸滲法、原位生成法、無壓浸滲法等等,使增強材料SiC均勻地分布金屬基體中,滿足復合材料結構和強度要求;能使復合材料界面效應、混雜效應或復合效應充分發揮;能夠充分發揮增強材料對基休金屬的增強、增韌效果;設備投資少,工藝簡單易行,可操作性強;便于實現批量或規模生產;能制造出接近**終產品的形狀,尺寸和結構,減少或避免后加工工序。 高體分鋁碳化硅廣泛應用于雷達的T/R組件中。
AlSiC可制作出光電模塊封裝要求光學對準非常關鍵的復雜幾何圖形,精確控制圖形尺寸,關鍵的光學對準部分無需額外的加工,保證光電器件的對接,降低成本。此外,AlSiC有優良的散熱性能,能保持溫度均勻性,并優化冷卻器性能,改善光電器件的熱管理。
AlSiC金屬基復合材料正成為電子封裝所需高K值以及可調的低CTE、低密度、**度與硬度的理想材料,為各種微波和微電子以及功率器件、光電器件的封裝與組裝提供所需的熱管理,可望替代分別以Kovar和W-Cu、Mo-Cu為**的***、第二代**電子封裝合金,尤其在航空航天、***及民用電子器件的封裝方面需求迫切。 杭州陶飛侖新材料有限公司生產的鋁碳化硅熱膨脹系數較低,比剛度較高。安徽質量鋁碳化硅廠家現貨
高體分鋁碳化硅廣泛應用于微波處理器的蓋板中。湖北標準鋁碳化硅方法
a、T/R模塊封裝:機載雷達天線安裝在飛機萬向支架上,采用機電方式掃描,其發展的重要轉折點是從美國F-22開始應用有源電子掃描相控陣天線AESA體制,其探測距離下表所示:圖三機載雷達探測距離
APG-80捷變波束雷達、多功能機頭相控陣一體化航電系統、多功能綜合射頻系統、綜合式射頻傳感器系統、JSF傳感器系統等,所用T/R (發/收)模塊封裝技術日趨成熟,每個T/R模塊成本由研發初期的10萬美元降至600-800美元,數年內可降至約200美元,成為機載雷達的**部分。幾乎所有的美國參戰飛機都有安裝新的或更新AESA計劃,使其作戰效能進一步發揮,在多目標威脅環境中先敵發現、發射、殺傷,F-22機載AESA雷達可同時探測**目標數分別為空中30 個、地面16個、探測范圍為360°全周向。 湖北標準鋁碳化硅方法
杭州陶飛侖新材料有限公司位于塘棲鎮富塘路37-3號1幢201-1室。公司業務涵蓋鋁碳化硅,鋁碳化硼,銅碳化硅,碳化硅陶瓷等,價格合理,品質有保證。公司將不斷增強企業重點競爭力,努力學習行業知識,遵守行業規范,植根于電子元器件行業的發展。陶飛侖新材料秉承“客戶為尊、服務為榮、創意為先、技術為實”的經營理念,全力打造公司的重點競爭力。