工研所的QPQ表面復合處理技術的關鍵是環保的鹽浴配方, 曾由德國公司壟斷,當時還屬于機械部成都工具研究所的研究員們經過十多年的不懈努力,自主開發了這項新技術,并已在中國大面積推廣,取得了很好的社會效益,使中國在金屬鹽浴表面強化改性技術領域達到了國際先進水平。他們從事的研究工作當年為“九五”國家重點推廣項目,在替代國外引進技術,提高產品的耐磨性和耐蝕性,解決產品變形難題,以及消除環境污染等方面,具有廣泛的應用前景,已經成為中國發展汽車摩托車等產業不可缺少的新技術。成都工具研究所有限公司的QPQ表面處理工藝可以使刀具表面形成一層硬度很高的氮化層。環保QPQ生產廠家
工研所低溫QPQ處理技術在航空航天、新能源等高精尖領域應用廣,該技術在可以提升硬度的同時幾乎不破壞其耐腐蝕性以及極小的變形,對于密封圈、墊圈等變形尺寸要求高的零件,該工藝是較好的選擇。常規QPQ氮化工藝處理溫度通常在500℃以上,這樣會造成一些回火或調質溫度低的碳鋼或合金鋼的心部硬度降低,從而影響其零件的整體性能,如抗拉強度等。奧氏體不銹鋼由于含碳量很低,無法通過相變進行強化,常規的QPQ技術雖然可以大幅度提高其耐磨性能,但由于溫度過高,導致CrN的大量析出,嚴重損害了不銹鋼的耐蝕性能。當采用較低的溫度來處理時,可以在奧氏體不銹鋼表面生成“S”相,在不降低耐蝕性能的同時大幅度提高其耐磨性能。有些高速鋼、模具鋼等零件采用現有QPQ處理后會出現化合物層崩缺的現象,因此不敢長時間進行氮化處理,但當處理溫度降低以后,隨著氮原子的活性降低,化合物形成需要的時間更長,可以進行更長的氮化處理以提高擴散層的深度。鋁合金QPQ液體氮化QPQ表面處理可以提高刀具的抗疲勞性能,延長刀具的使用壽命。
工研所的QPQ表面復合處理技術是一種先進的表面處理工藝,用于提高金屬部件的耐磨性和耐腐蝕性。將零件浸入氮化鹽浴中,然后進行淬火和拋光,以形成堅硬的耐腐蝕表面層。與傳統的表面處理方法相比,QPQ 具有以下幾個優點:提高耐磨性——QPQ 過程中形成的表面硬化層可明顯提高部件的耐磨性;增強耐腐蝕性——軟氮化層可提供出色的防腐蝕保護,延長經處理部件的使用壽命;提高疲勞強度——QPQ 可提高部件的疲勞強度,使其在循環負載條件下更加耐用。
工研所研發的QPQ技術,其工藝溫度設定巧妙地低于鋼的相變溫度,這意味著在處理過程中,金屬的內部組織結構不會發生改變,從而避免了組織應力的產生。相較于那些會引發組織轉變的常規熱處理工藝,如淬火、高頻感應淬火以及滲碳淬火,QPQ技術所帶來的工件變形要小得多。這一特性使得QPQ技術在處理精密零部件時具有明顯的優勢。在進行QPQ處理時,為了確保處理效果并減小工件的形狀變化,桿軸件或板件必須垂直裝卡,以保證處理的均勻性。預熱階段,應緩慢熱透工件,必要時還可以采用隨爐升溫預熱的方式,以進一步減小熱應力對工件的影響。在氧化工序結束后,為了讓工件能夠更穩定地定型,可將其冷卻到接近室溫后再進行清洗。這一系列精細的操作步驟,都是為了確保QPQ處理后的工件能夠保持原有的形狀精度,滿足高精度零部件的制造要求。經過QPQ表面處理的刀具具有更好的切削表面質量。
在汽車發動機中,活塞桿是連接活塞和曲軸的關鍵部位,它承受著活塞往復運動時的巨大力量,并將這些力量轉化為旋轉動力,驅動汽車前進,因此,它要求有較高的耐磨性和良好的耐蝕性。原來一般采用鍍硬鉻來增加表面的耐蝕性和耐磨性,但是鍍鉻的六價鉻離子嚴重污染環境,因此采用環保的工研所QPQ工藝方法,其耐磨性比鍍硬鉻高2倍,耐蝕性比鍍硬鉻高20倍,同時通過鹽霧試驗發現工研所QPQ處理后的活塞桿具有良好的耐蝕性,因此可以用工研所QPQ技術代替鍍硬鉻。QPQ表面處理可以改善刀具的切削表面粗糙度。QPQPIP
成都工具研究所有限公司的QPQ表面處理技術在刀具行業內享有很高的聲譽。環保QPQ生產廠家
油氣彈簧,作為特種車輛底盤懸架液壓系統中的重要組件,承擔著傳遞車輪與車架之間垂向力的重任,其性能直接關乎車輛的行駛穩定性和乘坐舒適性。缸套,作為油氣彈簧的關鍵零部件,不僅需承受高壓油液的沖擊,還需長期暴露在惡劣的外部環境中,因此,具備良好的耐磨與耐蝕性能是缸套不可或缺的品質。經過深入探索與實踐,我們發現采用工研所的QPQ工藝能夠明顯提升缸套的耐磨與耐蝕性能。在560±1℃的精確控溫下,金屬材料與特制的鹽浴液體發生化學反應,從而在金屬表面形成一層極為致密的化合物層。這層化合物完全由氮化鐵構成,具有極高的硬度和致密性,能夠有效抵御外部磨損和腐蝕的侵襲。經過QPQ處理后的缸套,其表面硬度明顯提高,耐磨性能得到極大增強,即使在惡劣工況下也能保持長久的使用壽命。同時,其耐腐蝕性也得到了明顯提升,有效延長了缸套的使用壽命,降低了維護成本,為特種車輛的安全行駛提供了有力保障。環保QPQ生產廠家