“光伏效應”。指光照使不均勻半導體或半導體與金屬結合的不同部位之間產生電位差的現象。它首先是由光子(光波)轉化為電子、光能量轉化為電能量的過程;其次,是形成電壓過程。有了電壓,就像筑高了大壩,如果兩者之間連通,就會形成電流的回路。光伏發電,其基本原理就是“光伏效應”。太陽能**的任務就是要完成制造電壓的工作。因為要制造電壓,所以完成光電轉化的太陽能電池是陽光發電的關鍵。簡單來說就是在光作用下能使物體產生一定方向電動勢的現象。基于該效應的器件有光電池和光敏二極管、三極管。能夠測量液體的表面運動,開啟了在各科學和工業領域實現獨特應用的可能性。惠州納米精度激光干涉儀
(3)非接觸測頭以及各種掃描探針顯微鏡。航空航天行業對此已經提出迫切要求,這是今后坐標測量機發展的關鍵技術。目前接觸式測頭已完全被國外所壟斷,非接觸測頭還沒有發展成熟,我們有參與競爭的機遇。以前較多采用的激光三角法原理受到很多限制,難以有突破性進展,但可在原理創新上下功夫。應該突破0.1~0.5μm分辨率。(5)新器件,新材料。過去,科研評價體系存在偏重于整機和系統,忽視材料和器件的趨向。新的突破點可能出現在新光源、新型高頻探測器。目前探測器的響應頻率只有10的9次方,而光頻高達10的14次方,目前干涉儀實際上是起著混頻器的作用,適應探測器的不足(如果探測器的響應果真能超過光頻,干涉儀也就沒有用了)。如果探測器的性能得到顯著提高,對于通訊也是很大的突破。北京激光干涉儀測量檢測軸承誤差在±5μm之間,由軸承誤差引起。
電力系統為了傳輸電能,往往采用交流電壓、大電流回路把電力送往用戶,無法用儀表進行直接測量。互感器的作用,就是將交流電壓和大電流按比例降到可以用儀表直接測量的數值,便于儀表直接測量,同時為繼電保護和自動裝置提供電源。電力系統用互感器是將電網高電壓、大電流的信息傳遞到低電壓、小電流二次側的計量、測量儀表及繼電保護、自動裝置的一種特殊變壓器,是一次系統和二次系統的聯絡元件,其一次繞組接入電網,二次繞組分別與測量儀表、保護裝置等互相連接。互感器與測量儀表和計量裝置配合,可以測量一次系統的電壓、電流和電能;與繼電保護和自動裝置配合,可以構成對電網各種故障的電氣保護和自動控制。互感器性能的好壞,直接影響到電力系統測量、計量的準確性和繼電器保護裝置動作的可靠性。
在光電效應中,要釋放光電子顯然需要有足夠的能量。根據經典電磁理論,光是電磁波,電磁波的能量決定于它的強度,即只與電磁波的振幅有關,而與電磁波的頻率無關。而實驗規律中的較早、第二兩點顯然用經典理論無法解釋。第三條也不能解釋,因為根據經典理論,對很弱的光要想使電子獲得足夠的能量逸出,必須有一個能量積累的過程而不可能瞬時產生光電子。光電效應里,電子的射出方向不是完全定向的,只是大部分都垂直于金屬表面射出,與光照方向無關,光是電磁波,但是光是高頻震蕩的正交電磁場,振幅很小,不會對電子射出方向產生影響。所有這些實際上已經曝露出了經典理論的缺陷,要想解釋光電效應必須突破經典理論定衛器的觸發運動控置。
光電效應分為:外光電效應和內光電效應。內光電效應是被光激發所產生的載流子(自由電子或空穴)仍在物質內部運動,使物質的電導率發生變化或產生光生伏特的現象。外光電效應是被光激發產生的電子逸出物質表面,形成真空中的電子的現象。外光電效應在光的作用下,物體內的電子逸出物體表面向外發射的現象叫做外光電效應。外光電效應的一些實驗規律a.只當照射物體的光頻率不小于某個確定值時,物體才能發出光電子,這個頻率叫做極限頻率(或叫做截止頻率),相應的波長λ0叫做極限波長。不同物質的極限頻率和相應的極限波長 是不同的。2000轉/分時的總振動高于150納米,可能導致電機 故障!模切尺寸激光干涉儀形貌測量
包括與機器的數據交互接口,可實現自動測量線和誤差補償!惠州納米精度激光干涉儀
按相數分絕大多數產品是單相的,因為電壓互感器容量小,器身體積不大,三相高壓套管間的內外絕緣要求難以滿足,所以只有3-15kV的產品有時采用三相結構。按電壓變換原理分電磁式電壓互感器:根據電磁感應原理變換電壓,原理與基本結構和變壓器完全相似,我國多在及以下電壓等級采用;電容式電壓互感器:由電容分壓器、補償電抗器、中間變壓器、阻尼器及載波裝置防護間隙等組成,用在中性點接地系統里作電壓測量、功率測量、繼電防護及載波通訊用;光電式電壓互感器:通過光電變換原理以實現電壓變換,還在研制中。按使用條件分戶內型電壓互感器:安裝在室內配電裝置中,一般用在及以下電壓等級;戶外型電壓互感器:安裝在戶外配電裝置中,多用在及以上電壓等級。惠州納米精度激光干涉儀