遞送***水平的藥物或***性基因遞送尚未證明靜脈注射與臨床相關濃度的微泡。大鼠心臟基因轉染使用1毫升靜脈注射超聲造影劑,濃度約為1×109微泡/ml。將***性基因有效遞送到大鼠胰腺的方法是,在外殼內注射1毫升含有該基因的微泡,注射濃度為5×109微泡/ml。這些研究使用的劑量遠遠大于推薦用于人體成像的劑量。能夠通過小劑量靜脈注射微泡成功轉染的微泡劑的開發(fā)對未來的轉化非常重要研究。然而,目前尚不清楚,是由于微泡的有效載荷能力較低而需要高濃度,還是超聲波應用時需要高濃度的氣泡。或者,可以考慮在肌肉或動脈內注射高濃度微泡以實現(xiàn)局部藥物或基因遞送的介入性技術。在小型臨床前研究中,肌內注射微泡和質粒可產生一致的局部轉染。將質粒DNA和微泡共同注入腎動脈,結合瞬時血管壓迫和超聲,已被證明可在腎臟中產生局部基因表達。將質粒DNA和微泡共同注射到腦脊液中,再加上超聲波,產生了DNA轉移到大鼠***系統(tǒng)。Tsunoda等人表明,與通過尾靜脈注射相比,向左心室局部注射微泡和質粒DNA后,報告基因轉染到心臟的數(shù)量增加了一個數(shù)量級。 納米微泡的直徑通常在150-500納米之間,是藥物分布的誘人場景并且與微泡相比已證明可以改善聚集和保留。西藏超聲微泡siRNA
超聲微泡的粒徑大小直接影響微泡的動物的體內滲透和代謝。首先,與傳統(tǒng)藥物相比,超聲造影劑微泡相對較大。微泡的直徑一般為1-10um。**血管特別具有滲透性,通常有較大的內皮間隙;然而,造影劑微泡通常太大而無法脫離脈管系統(tǒng)。在Wheatley等人**近的一篇文章中,描述了一種納米顆粒超聲造影劑(直徑450nm)具有良好的聲學性能。該造影劑在實驗家兔中產生了良好的腎臟混濁。南京星葉生物也有500nm左右的超聲微泡造影劑。雖然超聲造影劑的循環(huán)時間在過去幾年有所增加,但這也是超聲紿藥時需要關注的問題。例如,索諾維的消除半衰期為6分鐘。Albunex的攝取發(fā)生在大鼠和豬的肝臟、肺和脾臟,70%在3分鐘內從血液中***。如果藥物被網狀內皮系統(tǒng)從循環(huán)中取出,則循環(huán)時間可能不夠長,無法將更多的藥物遞送到目標區(qū)域。造影劑通常被注入外周靜脈,因此在一個給定的循環(huán)周期中,只有少量的造影劑會通過**。為了破壞足夠的造影劑以***增加局部濃度,必須進行多次循環(huán)。聚合物殼劑可**增加循環(huán)時間。雖然超聲微泡是相對較大的藥物,但可以附著在氣泡表面或納入內部脂質層的藥物量是一個問題。超聲微泡siRNA多年來,脂溶藥物已被納入運載工具,以避免全身毒性。
目前,有3家微泡廠家生產的產品可用于心臟病學應用,分別是Optison(GE Healthcare,Milwaukee,WI,),Definity(Lantheus Medical Imaging,Billerica,MA,E)和SonoVue(BraccoSpA,Milano,Italy)。這些試劑中的微泡大于1um,有效成像持續(xù)時間小于10分鐘。南京星葉生物公司研發(fā)的超聲微泡造影劑是有脂質外殼包裹全氟丙烷惰性氣體組成,平均尺寸約為500-700nm,比商品化微泡的粒徑小得多。小尺寸分布防止微泡被困在肺***床中,從而允許長時間的體內成像。納米微泡成像持續(xù)時間長達20分鐘,而聲諾維的成像持續(xù)時間小于6min。
組織中的微泡檢測可以利用超聲介導的微泡破壞。超聲壓力通常以機械指數(shù)(MI)的形式出現(xiàn)在醫(yī)學成像系統(tǒng)的屏幕上,一個相對商,計算為峰值負聲壓除以頻率的平方根。非線性微泡行為一般在聲壓較高時表現(xiàn)得更明顯(例如MI 0.2)。在某些系統(tǒng)中,它可能是檢測到的***機會,例如,較小的微泡。在更高的壓力下(MI 0.4和高達1-1.9,取決于頻率),微泡被破壞,它們的聲學后向散射信號完全消失,這可以提供額外的證據,證明目標造影劑存在于組織中。一些氣泡殼(通常是那些涂有薄脂質單層的)是柔韌性的,即使在低壓超聲(例如MI 0.06)下也會振動。對于厚殼聚合物氣泡,除非達到臨界壓力并且外殼破裂,否則微泡不會振動,并且聲回波響應仍然很低。對于殼較厚的氣泡,從氣泡中產生回聲的臨界聲能更高。微泡的制造通常通過兩種通用技術來進行:分散氣體顆粒的自組裝穩(wěn)定,以及芯萃取的雙乳液制備。
氣泡將改變血管壁,允許藥物劑外滲,通過將微泡與顆粒和染料共同注射,可評估血管外藥物遞送的可行性。微泡與釓共注射后MRI顯示釓外反酸。或者,藥物可以被納入微泡中,并通過在病變的給藥血管中選擇性地破裂微泡來增加局部給藥。然而,這些方法并不能消除流動血液中釋放的藥物的沖洗和全身分布。有報道成功地證明了微泡減少新內膜形成、內皮轉染和凝塊溶解。盡管迄今為止遞送的微泡有效載荷的體積很小,但藥物或基因通過血腦屏障(BBB)的遞送是基于微泡的遞送的一個有前途的應用,因為很少有替代方法可以改變BBB對如此***的貨物的滲透性。如前所述,超聲輻照被描述為在破壞微泡之前將微泡推向血管壁的方法。在運載工具破裂時,通向血管壁的微泡將有效地將藥物涂在腔內。與單獨使用超聲波相比,這種方法導致體外細胞中熒光標記油的沉積量增加了十倍。遞送水平的藥物或基因遞送尚未證明靜脈注射與臨床相關濃度的微泡。超聲微泡siRNA
超聲微泡的殼體類型的變化會影響所產生氣泡的厚度、剛度和耐久性。西藏超聲微泡siRNA
將配體附著在微泡表面的基本方法有兩種:要么通過直接共價鍵,要么通過生物素-親和素連接。生物素-親和素連接是一種直接的技術,其中生物素化的配體通過親和素橋連接到生物素化的微泡上。盡管生物素-親和素連鎖在概念驗證和臨床前靶向研究中很有用,但免疫原性使其無法轉化為人類。共價連接是更可取的和可以在創(chuàng)建微泡殼之前或之后進行。偶聯(lián)到預形成的微泡上的策略包括通過碳二亞胺和n-羥基磺基琥珀酰亞胺將配體的氨基與微泡殼上的羧基結合,或者可選地將配體上的巰基與微泡殼上的馬來酰亞胺結合。關于偶聯(lián)化學的更多細節(jié)可以在A.L.Klibanov**近的一篇綜述中找到。對于脂質包被的藥物,使用預形成的配體-脂聚合物的優(yōu)點是,在臨床環(huán)境中,從微泡產生到給藥到患者體內所需的步驟更少。然而,通過后期連鎖,通過對預形成的微泡進行一系列修飾,可以更有效地利用配體。西藏超聲微泡siRNA