由于CRISPR/Cas的發現,基因組編輯領域經歷了一場**。細菌免疫系統的CRIPSR/Cas成分導致全基因組雙鏈DNA斷裂,并通過內部DNA修復過程促進基因編輯。有研究指出,陽離子聚合物聚乙二胺-環糊精(PC)有助于編碼Cas9和sgRNA的質粒的有效遞送。當大質粒通過PC傳遞時,它們可以以高N/P比聚結并包裹質粒;這有效地編輯了兩個基因組位點:血紅蛋白亞基β(19.1%)和菱形5同源物1(RHBDF1(7.0%))。研究人員開發了巨噬細胞特異性啟動子驅動的Cas9表達質粒(pM458和pM330),并將其包裹在陽離子脂質輔助PEG-b-PLGA納米顆粒中,以解決無法在靶組織和細胞中進行精確基因編輯的問題(CLAN)。基于陽離子聚合物的基因***在臨床試驗中顯示出巨大的潛力,但由于研究仍處于早期階段,目前大多數研究都處于臨床前階段。肌內注射脂質體不能引起強烈的毒性反應,這與肺內或靜脈注射途徑的情況不同。河南轉染試劑疫苗
基于非病毒的轉染方法可以進一步分為物理/機械方法和化學方法。常用的物理/機械轉染方法包括電穿孔、聲孔、磁***、基因顯微注射和激光照射。電穿孔是一種常用的物理轉染方法,利用電壓瞬間增加細胞膜通透性,允許外來核酸進入。這種方法通常用于轉染原代細胞、干細胞和B細胞系等難以轉染的細胞。然而,使用高壓可能導致細胞壞死、凋亡和長久性細胞損傷。超聲輔助轉染或超聲穿孔涉及使用微泡技術在細胞膜上制造孔,以減輕遺傳物質的轉移,而激光照射輔助轉染使用激光束在質膜上制造小孔,允許外來遺傳物質進入。與電穿孔一樣,超聲穿孔和激光輔助轉染也有破壞細胞膜和不可逆細胞死亡的風險。相比之下,磁輔助轉染,或使用磁力來幫助轉移外來遺傳物質的磁轉染,似乎對生物的破壞性較盡管效率較低,但對宿主細胞的破壞較小。另一方面,基因顯微注射涉及使用特定的針刺穿細胞,將所需的核酸注射到宿主細胞的細胞核中。然而,這項技術需要經過專門訓練的人員或機器人系統,他們可以高精度地執行程序,以防止細胞損傷,因此在基因***等臨床應用中具有重要價值。與物理或機械轉染方法相比,化學轉染涉及使用專門設計的化學品或化合物來幫助將外源核酸轉移到宿主細胞中。河南轉染試劑疫苗作為一般指導原則,建議使用早期傳代的細胞以獲得良好的轉染效率,特別是涉及原代或干細胞的轉染。
在7種轉染試劑(DAC-30、DC-30、Lipofectin、LipofectAMINEPLUS、Effectene、FuGene 6和superect)中,FuGene 6轉染HASMCs和α-10 SMCs的效率比較高。在這兩種細胞系中,superect產生的細胞毒性作用比較高,其次是DAC-30和Lipofectamine Plus,而FuGene 6被認為對細胞系相對安全。在另一項比較人類和動物來源的不同細胞系轉染結果的研究中,豬氣管上皮細胞(PTE)被Effectene、Lipofectamine Plus和PEI等轉染試劑轉染的效率高于人類氣管上皮細胞(HTE)。化學轉染后,轉染后的HTE也表現出比PTE更低的活力。兩項被引用研究的綜合結果認為動物細胞系可能比人類細胞系更有效地轉染。懸浮細胞通常被認為比貼壁細胞更難轉染,因為轉染復合物對細胞的潛在附著減少懸浮細胞表面。然而,一項比較Xfect、Lipofectamine2000、Nanofectamin、TransIT-X2和TransIT-2020效率的研究表明,除了Xfect之外,所有試劑轉染懸浮細胞的效率都高于貼壁細胞(Tammetal.,2016)。然而,相反觀察結果背后的原因在很大程度上仍不清楚,未來可能會進一步探索。核酸與轉染試劑的比例
脂質復合物又稱陽離子脂質-核酸復合物(CLNACs),是由非離子核酸與陽離子脂質體(CLs)表面結合,**終形成多層脂質-核酸復合物而形成的。帶負電荷的核酸被吸引到帶正電荷的囊泡表面,**初與停靠在陽離子囊泡表面的核酸分子形成復合物,然后發展到核酸分子持續粘在脂質分子上的階段,脂質雙分子層圍繞緊實的核脂質顆粒。復合物形態的這種異質性可能歸因于囊泡的脂質組成、復合物形成的方式、脂質:核酸比例、核酸結構的大小、試劑的批次差異以及用于處理和可視化這些復合物的技術。除了靜電吸引外,疏水相互作用被認為有助于脂質和核酸之間的復合物形成。因此,根據正電荷(陽離子脂質)與負電荷(核酸上的磷酸基)的電荷比,脂質體可能通過與細胞表面的蛋白聚糖基團等帶電殘基的靜電相互作用,或通過與質膜疏水區域的疏水相互作用進入細胞。與DNA轉染類似,RNA可以通過基于RNA的病毒或非病毒載體導入真核細胞。
納米顆粒的尺寸很小,但它們比其他顆粒具有更大的粘附表面,同時具有高穩定性。正因為如此,它們能夠成功地穿過細胞膜,進入細胞,并與自然發生的細胞內途徑結合,具有將特定顆粒帶到預定目標位置的***準確性。由于納米顆粒在細胞內運輸和保護化合物方面具有巨大的潛力,可以避免酶的消化或儲存在核內體中,因此納米顆粒作為細胞過程成像的工具,作為將藥物攜帶到細胞內的各種系統的一部分,或**終用于基因傳遞。納米顆粒通過官能團和非共價鍵之間的特異性和非特異性鍵與核酸結合的特性類似于體內DNA和抑制蛋白之間的自然結合。在細胞內運輸外源DNA的效率受到兩個主要因素的限制:內吞作用,穿過細胞膜的方式,或適當的細胞受體***和內體屏障的破壞。研究表明,在細胞內,與熒光標記物連接的納米顆粒聚集在靠近細胞核的溶酶體中,但它們不會穿過核膜。事實上,這并沒有干擾特定基因結構編碼的蛋白質的表達,這證明了納米顆粒可以參與內體途徑,并可以通過細胞質將DNA運輸到細胞核。不同種類的化學物質有不同的納米粒子,它們具有不同的性狀、化學性質、物理性質和結構。在大腸桿菌細胞中復制的質粒通常含有二核苷酸頻率為1:16的CpG基序,這與細菌DNA中的頻率相似。河南轉染試劑疫苗
超聲輔助轉染涉及在宿主細胞膜上制造微小的孔,以促進核酸(包括DNA和RNA)的傳遞。河南轉染試劑疫苗
在轉染實驗中使用對照對于確定所使用的轉染試劑和核酸的效果和效率至關重要。通常,質粒轉染和寡核苷酸轉染實驗都需要陽性對照、陰性對照、未轉染對照和模擬轉染對照。陽性對照是先前已被證明對轉染實驗產生已知影響的DNA或RNA,例如影響特定下游遺傳靶點的表達。在轉染工作的初始階段,需要一個陽性對照來建立一個優化的轉染方案,之后,陽性對照可以作為參考,與實驗組進行比較。另一方面,陰性對照用于確認宿主細胞中預期的基因表達變化是否歸因于轉染而不是其他原因。在質粒DNA轉染中,陰性對照可以是缺乏DNA和轉染載體的反應,或者兩者都沒有,只有宿主細胞。在小RNA轉染中,陰性對照包含一個非同源序列,該序列通常是一個與靶序列具有相同核苷酸長度和組成但與任何已知哺乳動物基因不同源的打亂序列。未轉染的對照包括不含轉染試劑和核酸的細胞培養,作為宿主細胞基本信息的對照,包括活力、表型,更重要的是,不受轉染影響的靶基因的基線表達水平。模擬轉染是指不含遺傳靶標或核酸的轉染,可以評估轉染試劑(如背景自熒光噪聲)產生的影響。在質粒轉染實驗中,推薦使用空質粒對照作為模擬轉染對照。河南轉染試劑疫苗