腫瘤細胞成像:近紅外熒光染料IR-780具備使多種腎透明細胞*細胞顯像的能力,對正常腎胚上皮細胞則無此能力,可用于血液中腎透明細胞*細胞的特異性診斷。這為腫瘤細胞的檢測和診斷提供了新的方法21。疾病標志物檢測:設計合成的近紅外熒光探針RB-Phenylacrylate(NOF1),用于高選擇性和高靈敏度檢測半胱氨酸(Cys),并成功應用于活細胞、斑馬魚和小鼠中半胱氨酸的近紅外熒光成像檢測。近紅外熒光探針RB-Phenyldiphenylphosphinate(NOF2)用于過氧亞硝酸根的熒光成像,實現了活細胞和小鼠炎癥模型中ONOO?的熒光成像檢測。這些探針為疾病標志物的檢測和成像提供了新的手段23。四、支持超分辨率成像新型近紅外氧雜蒽熒光染料如KRhs,可用于超分辨率成像。KRhs顯示出強烈的近紅外發射峰,在700nm處具有高熒光量子產率,且在沒有增強緩沖液的幫助下,表現出隨機熒光開關特性,支持單熒光團的時間分辨定位。KRhs被功能化為KRh-MitoFix、KRh-Mem和KRh-Halo,分別具有線粒體、質膜和融合蛋白靶向能力,可用于活細胞中這些目標的超分辨率成像**-熒光素鉀鹽是熒光素酶的水溶性底物,存在于多種發光生物體中。遼寧生物發光熒光染料
小動物***成像技術(invivoimagingtechnology)是利用高靈敏度的光學檢測儀器直接檢測動物***體內的細胞活動和基因行為研究的一類技術,是近年來發展**快的生命科學研究方法,是**直接觀察細胞和分子在體內行為的新興技術,已廣泛應用于生命科學研究的各個領域[1]。***動物體內光學成像主要采用生物發光與熒光發光兩種技術。生物發光是利用熒光素酶報告基因在***內表達產生的熒光蛋白與體外注射的熒光素底物發生化學反映產生熒光。而熒光發光成像技術是將熒光物質或熒光物質標記的小分子物質如基因、細胞也可是小分子藥物、抗體、納米材料等導入到***體內,通過小動物***成像系統的激發光源激發熒光集團到達高能量狀態,而后產生波長較激發光長的發射光,然后通過高靈敏度制冷CCD鏡頭探測到***內的發射光。通過***成像技術可以觀測***動物體內**的生長和轉移、炎癥的發生、特定基因的表達和藥物作用效果等生物學過程。云南小動物熒光染料異硫氰酸熒光素含有一個異硫氰酸酯反應基團這有助于其對通常存在于生物分子中的動漫和巰基基團具有反應性。
熒光染料的穩定性在動物成像中起著至關重要的作用,以下將詳細闡述其對動物成像結果的影響。一、影響成像的準確性減少偽影產生:穩定的熒光染料能夠持續發出較為恒定的熒光信號,避免因染料自身的不穩定而導致信號強度的突然變化,從而減少成像中的偽影。例如,在利用近紅外熒光染料進行生物功能長期觀察的研究中發現,常規的近紅外熒光染料在化學穩定性和耐光性差時,會限制其作為熒光成像劑的應用1。不穩定的染料可能在成像過程中出現信號波動,使得圖像難以準確反映動物體內的真實情況,影響醫生對病情的判斷和后續治療方案的制定。確保目標定位準確:對于特定的動物組織或***成像,穩定的熒光染料有助于準確地定位目標區域。例如在新型嗪類熒光染料用于術中神經成像的研究中,穩定的熒光染料YQN-3在臂叢神經和坐骨神經中顯示出高特異性神經靶向信號,能夠精細定位并識別出喉返神經,從而在術中保留這些神經的完整性48。如果熒光染料不穩定,可能會導致目標定位不準確,增加手術風險和難度。
神經特異性熒光染料:噁嗪類熒光染料YQN-3能夠精細定位并識別出動物(大鼠)的喉返神經,從而在術中保留這些神經的完整性8。這表明該類熒光染料對特定的神經組織具有較高的特異性。良好的穩定性可以確保在動物成像過程中始終保持對特定神經部位的準確識別和定位,為手術操作提供可靠的指導。如果穩定性不佳,可能會導致成像部位的特異性降低,出現錯誤定位或無法清晰顯示目標神經的情況。熒光染料標記的氧化鐵磁性納米顆粒(MNP):使用雙重熒光染料標記的MNP,其中附著在**(DY-730)上的染料在小鼠施用后的一天,其熒光在肝臟和脾臟中較為突出,但此后的時間點不明顯。相反,在體內粘附到PEG涂層上的染料Dy-555的熒光較為穩定14。這說明不同部位的熒光染料穩定性差異會影響對特定***(如肝臟和脾臟)的成像特異性。穩定性好的染料能夠更準確地反映目標***的情況,而穩定性差的染料可能會導致成像結果的不確定性,影響對動物體內特定部位的準確判斷。南京星葉生物熒光染料標記蛋白。
第二種***使用的DNA染色方法是Hoechst染料,**初由化學公司HoechstAG生產。Hoechst33258、Hoechst33342和Hoechst34580都是鄰苯二甲酰亞胺,具有向A-T富集區插入的趨勢,因此后者不常使用。與DAPI相似,此類染料受到紫外線激發并在455nm下發射比較大值,在無結合狀態下變為510–540nm。Hoechst染料還具有細胞滲透作用,因此可用于固定細胞和活細胞。與DAPI不同是,Hoechst染料毒性更低。DNA染色劑碘化丙啶無法透過細胞膜。在細胞培養中,因為該染色劑無法進入完好的細胞內,所以常常被用來區分活細胞和死細胞。碘化丙啶也是一種結合劑,但對不同的堿基沒有特異性。在核酸結合態下,其比較大激發波長為538nm,比較高發射波長為617nm。未結合狀態下碘化丙啶的比較大激發和發射被移到較短的波長和較弱的強度。它也可以在不改變其熒光特性的情況下與RNA結合。要區分DNA和RNA,必須使用足夠的聚合酶。異硫氰酸熒光素(FITC) 是一種有機熒光染料,目前,這種熒光染料仍用于免疫熒光和流式細胞術中。上海水溶熒光染料
Super Flour 系列在生物熒光領域已逐漸替代FITC,Cy3, Cy5, Cy5.5, Cy7等熒光染料。遼寧生物發光熒光染料
Cy3 (Cyanine 3) 是一種發橘黃色熒光的花青素熒光染料。Cy3染料的激發峰和發射峰分別在550 nm和570 nm左右,它的熒光肉眼觀察很明亮,并且對pH不敏感,在共聚焦顯微鏡中可以用532nm(肩峰)或者556nm(頂峰)的激光束激發,在普通熒光顯微鏡中可以用 TRITC (tetramethylrhodamine) 的濾片觀察,所以在絕大部分熒光儀器上都可以使用。Cy3也是Dil等細胞電位追蹤劑的母核,所以它是在生物技術中非常有用的熒光染料。在熒光成像時,Cy3的背景熒光一般認為比TAMRA等TRITC系列的染料低。 Cy3可以用來標記蛋白,抗體,多肽等,它常見的使用是標記核酸分子(DNA和RNA)?;跓晒鈭D譜的相似性,Cy3可以被TAMRA,TRITC, BODIPY TMR等染料替代,在需要更明亮,更穩定的替代物時,可以考慮使用AF547或者AF555等。遼寧生物發光熒光染料