IMU零偏即IMU傳感器零偏,是指IMU器件在靜止狀態下仍然存在的輸出值,這個值是固定的,不會隨時間變化。在實際使用中,零偏可以通過一些方法進行補償,例如在初始啟動過程中利用幾秒鐘的靜態數據求平均即可扣掉大部分。 IMU零偏包括常值零偏、全溫零偏誤差、零偏重復...
IMU全稱Inertial Measurement Unit,慣性測量單元,主要用來檢測和測量加速度與旋轉運動的傳感器。其原理是采用慣性定律實現的,這些傳感器從超小型的的MEMS傳感器,到測量精度非常高的激光陀螺,無論尺寸只有幾個毫米的MEMS傳感器,到直徑幾...
傾角儀:靜態性能好,精度高,無累積誤差,測量物體相對于地面垂直方向的傾角(1軸),其輸出頻率低,實時性較差,而且輸出信號容易受噪聲污染。 加速度計:靜態性能好,精度高,更新頻率快,測量與慣性有關的加速度,包括旋轉、重力和線性加速度,然后對測量數據進行一次積分可...
光纖陀螺是應用Sagnac效應測試旋轉角速度的全固態陀螺儀,它將同一光源發出的一束光分解為兩束,讓這兩束光在同一個環路內沿相反方向循行一周后會合產生干涉,這就是Sagnac效應。光纖陀螺具有結構簡單、動態范圍寬、啟動時間短、抗沖擊能力強等特點,已成為慣性測量和...
光纖陀螺的工作原理是基于薩格納克(Sagnac)效應。薩格納克效應是相對慣性空間轉動的閉環光路中所傳播光的一種普遍的相關效應,即在同一閉合光路中從同一光源發出的兩束特征相等的光,以相反的方向進行傳播,較后匯合到同一探測點。 若繞垂直于閉合光路所在平面的軸線,相...
光纖陀螺的發展是日新月異的。不使用是科學家熱心于此,許多大公司出于對其市場前景的看好,也紛紛加入到研究開發的行列中來。由于光纖陀螺在機動載體和凌思領域的應用甚為理想,因此各國的軍方都投入了巨大的財力和精力。 從產業發展的長遠角度來看,光纖陀螺在有名重要領域的應...
自 20 世紀 70 年代現代光纖陀螺設想提出以來,光纖陀螺關鍵技術發展至今已取得重大突破,應用領域不斷拓展。美國是較早進行光纖陀螺研究和應用的國家,相關單位有美國 DARPA(美國有名高級研究計劃局)、Draper 實驗室、諾格公司、Honeywell 公司...
航海方面的應用 羅經是船舶重要的導航設備,主要有磁羅經和電羅經兩種。隨著光纖陀螺技術的發展和商業化水平的提高,光纖陀螺儀已成為船用通導設備中的新成員,在商用和有名船舶及船用設備中得到應用。基于捷聯式慣導系統的光纖陀螺儀羅經其旋轉軸與船舶坐標系的三個軸相對應,它...
光纖陀螺儀是以光導纖維線圈為基礎的敏感元件, 由激光二極管發射出的光線朝兩個方向沿光導纖維傳播。光傳播路徑的不同,決定了敏感元件的角位移。 光纖陀螺儀與傳統的機械陀螺儀相比,優點是全固態,沒有旋轉部件和摩擦部件,壽命長,動態范圍大,瞬時啟動,結構簡單,尺寸小,...
光纖陀螺儀需要突破的主要技術為靈敏度消失、噪聲和光纖雙折射引起的漂移和偏振狀態改變引起的比例因子不穩定。 1. 靈敏度消失 在旋轉速率接近零時,靈敏度會消失。這是由于檢測器中的光密度正比于薩格納克Sagnac相移的余弦量所引起。 2. 噪聲問題 光纖陀螺儀的噪...
光纖陀螺具有精度高、無運動部件、可靠性高等特點,同時在同精度水平的傳感器中價格相對較低,其應用前景十分廣闊。目前,在有名領域,由于光纖陀螺性能優勢明顯,已被普遍應用。在民用領域主要應用為:車輛與飛機控制——車輛的自動導航、定位定向,還可以通過對農用飛機姿態控制...
慣導系統是一種不依賴于外部信息、也不向外部輻射能量的自主導航系統。它能夠提供多種導航參數,而且隱蔽性好、抗干擾性強、全天候工作。之前世界研發的慣導系統,精度會隨時間而變化,長時間工作會產生較大誤差。有了這種保偏光纖,就會讓這種慣導系統具備超高精度,讓搭載這種系...
智能手機和平板電腦 IMU在手機和平板電腦的應用很普遍,很多游戲如飛行游戲,體育類游戲,陀螺儀監測游戲者手的位移,從而實現各種游戲操作效果。而我再舉個簡單的例子,當我們水平傾斜手機時,我們的智能手機會神奇地從縱向變成橫向。這就是我們手機里IMU中加速度計的功能...
陀螺儀:測量瞬時旋轉角速度。雖然加速度計可以測量線性加速度,但它們不能測量扭轉或旋轉運動。而陀螺儀測量關于三個軸的角速度:俯仰(x軸)、滾動(y軸)和偏轉(z軸)。故陀螺儀可用于確定物體在3D空間內的方位。但陀螺儀沒有初始參考系(如重力),故需要與加速度計結合...
從2010年起,美國凌思部高級研究計劃局開展了不依賴衛星的導航系統的研發工作,旨在多方面替代GPS,而不是作為GPS系統的補充。 目前,該局聯合美國密歇根大學的研究人員已經研制出了一種不依賴衛星的新型導航系統,它被集成在一個較有8立方毫米的芯片上,芯片中集成有...
將運載體從起始點引導到目的地的技術或方法稱為導航。導航系統測量并解算出運載體的瞬時運動狀態和位置,提供給駕駛員或自動駕駛儀實現對運載體的正確操縱或控制。隨著科學技術的發展,可資利用的導航信息源越來越多,導航系統的種類也越來越多。以航空導航為例,可供裝備的機載導...
由于制作工藝的原因,慣性傳感器測量的數據通常都會有一定誤差。凌思種誤差是偏移誤差,也就是陀螺儀和加速度計即使在沒有旋轉或加速的情況下也會有非零的數據輸出。要想得到位移數據,我們需要對加速度計的輸出進行兩次積分。在兩次積分后,即使很小的偏移誤差會被放大,隨著時間...
IMU 全稱Inertial Measurement Unit,中文叫慣性測量單元,是用來測量物體加速度、角速度、磁場,高度等的元器件。慣性測量元件包括多種傳感器,比如傾角儀、加速度計、陀螺儀、磁力計、氣壓計等。而市面上一般IMU傳感器是由一種或多種慣性測量單...
智能手機和平板電腦 IMU在手機和平板電腦的應用很普遍,很多游戲如飛行游戲,體育類游戲,陀螺儀監測游戲者手的位移,從而實現各種游戲操作效果。而我再舉個簡單的例子,當我們水平傾斜手機時,我們的智能手機會神奇地從縱向變成橫向。這就是我們手機里IMU中加速度計的功能...
慣性傳感器能夠為車輛中的所有控制單元提供車輛的即時運動狀態。路線偏移,縱向橫向的擺動角速度,以及縱向、橫向和垂直加速度等信號被準確采集,并通過標準接口傳輸至數據總線。所獲得的信號用于復雜的調節算法,以增強乘用車和商用車(例如,ESC/ESP、ADAS、AD)以...
零漂或零偏穩定性(Bias Stability) 是衡量陀螺儀精度的重要指標之一。 表示當輸入角速率為零時,衡量陀螺儀輸出量圍繞其均值(零偏)的離散程度。可以規定時間內輸出量的標準偏差相應的等效輸入角速率表示,也可稱為零漂。單位為°/h,°/s。 計算陀螺零偏...
早期的慣性測量單元是機械式陀螺儀,主要用于航海測量航向,后在二戰時,德國飛彈采用陀螺儀確定方向和角速度,用加速度計測試加速度,從而控制飛行姿態,爭取讓飛彈落到想去的地方,但那時的儀器精度較低。而后1976年等提出了現代光纖陀螺儀的基本設想,以及后來的激光陀螺儀...
光纖陀螺儀的分類方式有多種。依照工作原理可分為干涉型、諧振式以及受激布里淵散射光纖陀螺儀三類。其中,干涉型光纖陀螺儀是凌思代光纖陀螺儀,它采用多匝光纖線圈來增強薩格納克效應,目前應用較為普遍;按電信號處理方式不同可分為開環光纖陀螺儀和閉環光纖陀螺儀,一般來說閉...
慣性傳感器能夠為車輛中的所有控制單元提供車輛的即時運動狀態。路線偏移,縱向橫向的擺動角速度,以及縱向、橫向和垂直加速度等信號被準確采集,并通過標準接口傳輸至數據總線。所獲得的信號用于復雜的調節算法,以增強乘用車和商用車(例如,ESC/ESP、ADAS、AD)以...
根據所用陀螺儀的不同,慣性導航系統分為速率型捷聯式慣性導航系統和位置型捷聯式慣性導航系統。 前者用速率陀螺儀,輸出瞬時平均角速度矢量信號;后者用自由陀螺儀,輸出角位移信號。 捷聯式慣性導航系統省去了平臺,所以結構簡單、體積小、維護方便,但陀螺儀和加速度計直接裝...
干涉型光纖陀螺儀(I-FOG),即凌思代光纖陀螺儀,目前應用較普遍。它采用多匝光纖圈來增強SAGNAC效應,一個由多匝單模光纖線圈構成的雙光束環形干涉儀可提供較高的精度,也勢必會使整體結構更加復雜; 諧振式光纖陀螺儀(R-FOG),是第二代光纖陀螺儀,采用環形...
光纖陀螺儀的實現主要基于塞格尼克理論:當光束在一個環形的通道中行進時,若環形通道本身具有一個轉動速度,那么光線沿著通道轉動方向行進所需要的時間要比沿著這個通道轉動相反的方向行進所需要的時間要多。也就是說當光學環路轉動時,在不同的行進方向上,光學環路的光程相對于...
慣性傳感器能夠為車輛中的所有控制單元提供車輛的即時運動狀態。路線偏移,縱向橫向的擺動角速度,以及縱向、橫向和垂直加速度等信號被準確采集,并通過標準接口傳輸至數據總線。所獲得的信號用于復雜的調節算法,以增強乘用車和商用車(例如,ESC/ESP、ADAS、AD)以...
光纖陀螺成本低、維護簡便,正在許多已有系統上替代機械陀螺,從而大幅度提高系統的性能、降低和維護系統成本。現在,光纖陀螺已充分發揮了其質量輕、體積小、成本低、精度高、可靠性高等優勢,正逐步替代其他型陀螺。 今后光纖陀螺的研究趨勢有: (1)采用三軸測量代替單軸,...
根據光纖陀螺儀的精度高低,其應用范圍涵蓋從戰略級武器裝備到商業級民用領域。中高精度的光纖陀螺儀主要應用在航空航天等重要武器裝備領域,而低成本、低精度光纖陀螺儀主要應用在石油勘查、農用飛機姿態控制、機器人等許多精度要求不高的民用領域。隨著先進微電子與光電子技術的...