噴射沉積法是使用高速氣流將在熔融狀態下的鋁金屬液滴分散成細小的液滴,金屬液滴會與高速吹過的氣流進行熱傳遞,同時與B4C增強顆粒混合,液滴溫度逐漸降低的同時在基底襯板上逐漸冷卻凝固形成沉積胚,制備顆粒增強鋁基復合材料。
熔煉法制備B4C/Al合金是將Al或Al合金基體加熱到熔融狀態,在機械攪拌下將B4C陶瓷顆粒加入到Al合金基體中制備復合材料。根據攪拌時Al合金基體熔融狀態的不同,分為液態攪拌和半固態攪拌兩種。兩種方法均是加入B4C粉末攪拌均勻后,澆筑到模具內成型。該方法設備簡單、工序少、操作方便。 碳化硼-鋁復合材料的研究較為***。遼寧通用鋁碳化硼方法
烏克蘭切爾諾貝利核電站準備建造乏燃料**貯存設施:在奧爾維爾核電站,Holtec公司向烏克蘭**團介紹了攪拌摩擦焊接燃料籃(高溫蛻晶物質),一種鋁碳化硼金屬基復合材料。焊縫不會像傳統焊接那樣發生扭曲。Holtec公司在1月份首先公布了快速退役燃料籃設計,并介紹,燃料籃的導熱性是傳統不銹鋼燃料籃的10倍,縮短了在干貯存設備儲存之前乏燃料所需要的冷卻時間----從7年縮至2年半。公司稱,這一性能將使已關閉的電廠在反應堆關閉后66個月之內恢復到電廠運行前狀態。湖北多功能鋁碳化硼聯系人中子吸收材料又稱中子毒物材料,通過其含有的大的中子吸收截面物質(如硼、鎘、釓等)吸收熱中子。
當被***射中后,防彈陶瓷經歷了三個過程:(1)初始撞擊階段:彈丸撞擊陶瓷表面,使彈頭變鈍,在陶瓷表面粉碎形成細小且堅硬的碎塊區的過程中吸收能量;(2)侵蝕階段:變鈍的彈丸繼續侵蝕碎塊區,形成連續的陶瓷碎片層;(3)變形、裂縫和斷裂階段:***陶瓷中產生張應力使陶瓷碎裂,隨后背板變形,剩余的能量全部由背板材料的變形所吸收。彈丸撞擊陶瓷的過程中,彈丸和陶瓷均受到破壞。通俗來講,防彈陶瓷要足夠“硬”,能在撞擊過程中破壞彈體,防彈陶瓷還需要足夠“韌”,能在撞擊過程中釋放應力吸收能量,由于陶瓷是脆的,所以這個“韌”指的不是產生塑性變形的韌性,而是斷裂韌性。
(5)B4C/Al核燃料儲存和運輸材料B4C/Al中子吸收材料在海外已替代硼不銹鋼等材料大量應用于核燃料和乏燃料的高密度貯存和運輸。中國由于核電商業化開展較晚,中子吸收材料研發明顯滯后,導致吸收材料長期依賴進口,嚴重制約了中國核電自主化與走出去的發展戰略。我國目前研制的B4C/Al中子吸收材料(圖6)為乏燃料運輸容器***國產化提供了重要支持。
(6)滅堆救援材料1986年切爾諾貝利核電站事故中,蘇聯空軍飛行員先后飛行3000架次,將5000噸B4C、沙子與鉛粉的混合物投進反應堆的開口,保證了核反應堆停止運行,避免核輻射進一步加劇。 杭州陶飛侖公司已經研制出力學性能優異的B4C/Al復合材料。
4、B4C/Al2O3燃料芯塊B4C/Al2O3芯塊屬于一種可燃毒物燃料芯塊,置于燃料組件之中,用于控制堆芯過剩反應性,抑制功率峰,展平徑向功率分布。B4C/Al2O3芯塊為環形芯塊(圖5),是天然豐度B4C彌散在Al2O3中的復合陶瓷材料。芯塊長度從10~51mm,壁厚*約0.5mm,制造難度較高。核燃料可分為金屬型、陶瓷型和彌散型,外面敷以鋁合金、鎂合金、鋯合金以及不銹鋼等包殼材料。燃料芯塊的表面必須機械磨光,以保證與包殼材料的配合。核電站的反應堆堆芯裝有100多個這樣的核燃料組件,總重量達幾十噸。杭州陶飛侖公司采用先進生產技術,可大批量生產高體分鋁碳化硼復合材料。標準鋁碳化硼生產過程
杭州陶飛侖在在B4C/Al中子吸收材料制備方面開展了大量研究。遼寧通用鋁碳化硼方法
碳化硼陶瓷具有高硬度、高熔點、低密度的特點,將其與金屬鋁基復合材料能克服自身缺陷,使其得到更***的應用。碳化硼陶瓷是一種具有優良性能的特種陶瓷,如高熔點(2450℃)、高硬度、高模量、密度小(2.52g/cm3)、耐磨性好、耐酸堿性強,但其本身所具有的缺陷,如低斷裂韌性、過高的燒結穩定、抗氧化能力較差以及對金屬穩定性較差等,限制了其在工業上的廣泛應用。而金屬次啊了具有優良的導電、導熱性能以及高延展性且易加工的特點,將兩者進行復合可同時發揮兩者的優勢。
遼寧通用鋁碳化硼方法
杭州陶飛侖新材料有限公司屬于電子元器件的高新企業,技術力量雄厚。公司致力于為客戶提供安全、質量有保證的良好產品及服務,是一家有限責任公司(自然)企業。公司擁有專業的技術團隊,具有鋁碳化硅,鋁碳化硼,銅碳化硅,碳化硅陶瓷等多項業務。陶飛侖新材料以創造***產品及服務的理念,打造高指標的服務,引導行業的發展。