同時(shí)由于無污染、不含鉛、鎘等重金屬,被稱為綠色新能源產(chǎn)品。鋰電池在中長期內(nèi)仍將是動(dòng)力、消費(fèi)電子和儲(chǔ)能應(yīng)用的比較好選擇。隨著新能源汽車在全球范圍內(nèi)爆發(fā)性增長以及隨著支持政策持續(xù)推動(dòng)、技術(shù)進(jìn)步、消費(fèi)者習(xí)慣改變、配套設(shè)施普及等產(chǎn)業(yè)化進(jìn)程因素的影響不斷深入,新能源汽車對(duì)動(dòng)力鋰電池的需求成為推動(dòng)鋰離子電池行業(yè)高速增長的主要?jiǎng)恿ΑH騽?dòng)力電池規(guī)模已經(jīng)成為消費(fèi)電子、動(dòng)力和儲(chǔ)能三大領(lǐng)域中增量比較大的板塊。基于消費(fèi)電子產(chǎn)品制造技術(shù)的迭代發(fā)展以及移動(dòng)互聯(lián)網(wǎng)應(yīng)用的普及,以智能手機(jī)、平板和筆記本電腦為**的全球移動(dòng)設(shè)備和以智能可穿戴設(shè)備、智能出行、智能家居設(shè)備、電子霧化器為**的新興智能硬件產(chǎn)品市場規(guī)模快速增長,3C...
醚類電解液中,當(dāng)存在硝酸鋰的情況下金屬鋰沉積的庫倫效率可以高達(dá)98.5%。而酯類電解液中,金屬鋰沉積的效率*有70%左右。這表明醚類電解液中所形成的SEI膜是優(yōu)異且穩(wěn)定的SEI膜,而酯類電解液中的SEI膜則不穩(wěn)定容易破裂。因此,大多數(shù)金屬鋰沉積的研究都是在醚類電解液中進(jìn)行的。但是,醚類電解液的電壓窗口往往般都低于4V。因此,醚類電解液中所配的金屬鋰全電池都是對(duì)磷酸鐵鋰(LFP)或者鈦酸鋰(LTO)正極。而這樣的金屬鋰全電池的能量密度甚至不如傳統(tǒng)的鋰離子電池。氟化鋰主要用于電解鋁生產(chǎn)中電解質(zhì)組分。河南電池級(jí)氟化鋰價(jià)格多少錢一噸采用充放電測試和交流阻抗測試研究了硝酸鋰作電解液添加劑對(duì)鋰硫電池電化學(xué)...
該系統(tǒng)產(chǎn)生堅(jiān)固的外部Li2O固體電解質(zhì)界面和含氟、硼的共形正極電解質(zhì)界面。由此產(chǎn)生的穩(wěn)定的離子傳輸動(dòng)力學(xué)使得Li/LiNi0.8Mn0.1Co0.1O2在高挑戰(zhàn)性條件下(電池水平為295.1Whkg-1)循環(huán)140次,保留80%的容量。對(duì)于4.6VLiCoO2(160次循環(huán),容量保持率89.8%)正極和4.95VLiNi0.5Mn1.5O4正極,該電解質(zhì)還表現(xiàn)出高循環(huán)穩(wěn)定性。將金屬鋰負(fù)極與高壓氧化物正極結(jié)合構(gòu)建高電壓鋰金屬電池有助于實(shí)現(xiàn)全電池的高能量密度。由于高壓過渡金屬氧化物(如鈷酸鋰、鎳錳酸鋰)的高嵌/脫鋰電位和鋰負(fù)極的高活性,使其在有機(jī)電解液中穩(wěn)定性較差。通過改變電解液的組分對(duì)其正負(fù)極界...
氯離子含量可由原來的0.5%降至0.01%以下。若測得產(chǎn)品中亞硝酸的含量超過0.0005%,可將500~600g硝酸鈉加水400~430mL加熱溶解,按計(jì)算量加入硝酸銨(反應(yīng)式為:NaNO2+NH4NO3→NaNO3+N2+2H2O),煮沸兩小時(shí)。趁熱過濾。冷卻結(jié)晶,抽濾,用少量冰純水洗滌2~3次。4、取740g碳酸鋰加水1000ml加熱,在不斷攪拌下,慢慢加入65%的硝酸進(jìn)行反應(yīng)控制加酸速度,以免生成的CO2使反應(yīng)液外溢。當(dāng)溶液ph=3時(shí),停止加酸,煮沸半小時(shí)后,用氫氧化鋰調(diào)至中性,濾去不溶物,濾液蒸發(fā)至大部分結(jié)晶析出,趁熱甩干,于110℃下干燥。要提高純度可用水進(jìn)行重結(jié)晶。硝酸鋰(Lith...
采用充放電測試和交流阻抗測試研究了硝酸鋰作電解液添加劑對(duì)鋰硫電池電化學(xué)性能的影響。采用電子掃描顯微鏡觀察分析了添加劑對(duì)鋰負(fù)極的影響,探討了硝酸鋰的作用機(jī)理。結(jié)果表明,采用硝酸鋰作為鋰硫電池電解液的添加劑,可以在鋰負(fù)極表面形成具有鈍化負(fù)極活性表面及保護(hù)鋰負(fù)極的界面膜。該膜可以抑制電解液中高價(jià)態(tài)聚硫離子與鋰負(fù)極的副反應(yīng),避免在鋰負(fù)極表面形成不可逆的硫化鋰,從而提高鋰硫電池的循環(huán)性能和放電容量。采用硝酸鋰作添加劑的鋰硫電池***放電比容量達(dá)1172mA.h/g,循環(huán)100次比容量保持為629mA:h/g。康奈爾大學(xué)LyndenArcher團(tuán)隊(duì)以“Designingelectrolyteswithpo...
硫化鋰的加入可***增加界面處氟化鋰組分,以提升界面的穩(wěn)定性和離子傳導(dǎo)性,被證明可***改善鋰/PEO界面。**辨圖像和X射線光電子譜的SnapMaps分析證實(shí)界面處氟化鋰納米晶的富集,歸因于硫化鋰可以促進(jìn)LiTFSI分解成氟化鋰。進(jìn)一步分析發(fā)現(xiàn),氟化鋰納米晶可以有效的增加離子擴(kuò)散性能,抑制碳-氧鍵的斷鍵,并阻止鋰和PEO的持續(xù)副反應(yīng)。基于原子級(jí)別觀測引導(dǎo)的界面設(shè)計(jì),鋰-鋰半電池可穩(wěn)定循環(huán)超過1800小時(shí),鋰-磷酸鐵鋰和鋰-三元鎳鈷錳全電池具有更優(yōu)異的電化學(xué)性能。解決了鋰/電解質(zhì)界面原子觀測的挑戰(zhàn),對(duì)于構(gòu)建穩(wěn)定的界面和高性能的全固態(tài)鋰電池具有重要的參考意義。氟化鋰的操作注意事項(xiàng):密閉操作,局部...
氯離子含量可由原來的0.5%降至0.01%以下。若測得產(chǎn)品中亞硝酸的含量超過0.0005%,可將500~600g硝酸鈉加水400~430mL加熱溶解,按計(jì)算量加入硝酸銨(反應(yīng)式為:NaNO2+NH4NO3→NaNO3+N2+2H2O),煮沸兩小時(shí)。趁熱過濾。冷卻結(jié)晶,抽濾,用少量冰純水洗滌2~3次。4、取740g碳酸鋰加水1000ml加熱,在不斷攪拌下,慢慢加入65%的硝酸進(jìn)行反應(yīng)控制加酸速度,以免生成的CO2使反應(yīng)液外溢。當(dāng)溶液ph=3時(shí),停止加酸,煮沸半小時(shí)后,用氫氧化鋰調(diào)至中性,濾去不溶物,濾液蒸發(fā)至大部分結(jié)晶析出,趁熱甩干,于110℃下干燥。要提高純度可用水進(jìn)行重結(jié)晶。硝酸鋰(Lith...
顯示的右移的CV上升邊緣表明,隨著電解質(zhì)濃度的增加,鋰離子的界面動(dòng)力學(xué)過程逐漸減慢了。在LiNO3電解質(zhì)中,當(dāng)掃描速率設(shè)定為1mVs-1時(shí),不同濃度的歸一化CV曲線幾乎重疊,這意味著有足夠的時(shí)間讓鋰離子實(shí)現(xiàn)界面活化過程,低掃描速率下的動(dòng)態(tài)決定性步驟不是界面活化。然而,當(dāng)掃描速率提高到5mVs-1和10mVs-1時(shí),在高濃度的LiNO3中,上升沿明顯遷移到高電位。因此,在LiNO3電解質(zhì)系統(tǒng)中,電解質(zhì)濃度對(duì)界面動(dòng)力學(xué)的影響在低掃描速率下不突出,但在高掃描速率下變得明顯。在LiNO3中,也是如此,較高的電解質(zhì)濃度會(huì)導(dǎo)致較慢的鋰離子界面動(dòng)力學(xué)。在給定的濃度下,較高的掃描速率會(huì)導(dǎo)致CV上升沿向更高的電...
配備泄漏應(yīng)急處理設(shè)備。倒空的容器可能殘留有害物。早將萃取應(yīng)用于制備電池級(jí)氟化鋰的日本的小林健二,利用LiNO3溶液與氫氟酸反應(yīng)制備高純氟化鋰,先將原料LiNO;溶液進(jìn)行萃取,除去雜質(zhì)離子,然后與氫氟酸反應(yīng)制備高純氟化鋰。此方法需要選擇質(zhì)量的萃取劑,對(duì)萃取濃度、萃取時(shí)間、被萃取液的pH值等條件要求比較苛刻,同時(shí)反應(yīng)過程中會(huì)產(chǎn)生大量的廢酸,造成一定的環(huán)保壓力;復(fù)分解法有許多種,總得來說就是氟鹽與鋰鹽反應(yīng)所得。其優(yōu)點(diǎn)為操作簡單,但所得產(chǎn)品質(zhì)量受原料質(zhì)量影響頗大,同時(shí)副產(chǎn)的鹽需要進(jìn)行再處理,相應(yīng)增加生產(chǎn)成本,不適宜工業(yè)化生產(chǎn)。氟化鋰的工藝生產(chǎn)遠(yuǎn)不止上述這些,隨著國家對(duì)螢石開采的限制以及環(huán)保要求的提高,...
Electrochemicallyactivemonolayer,EAM),在鋰負(fù)極表面原位形成氟化鋰核,改變界面化學(xué)環(huán)境,調(diào)節(jié)SEI膜的納米結(jié)構(gòu)和金屬鋰的沉積形態(tài)。該多層SEI膜包含含氟化鋰的體相成分和非晶的外層成分,有效的密封了鋰負(fù)極表面,低溫時(shí)非晶表面的鈍化抑制了鋰負(fù)極的腐蝕和自放電,實(shí)現(xiàn)了低溫下高倍率充電的鋰金屬電池。為了揭示鋰的均勻沉積行為,用低溫TEM研究了低溫SEI的納米結(jié)構(gòu)。在-15℃時(shí),裸銅和EAMCu上形成的SEI在納米結(jié)構(gòu)和主要成分方面完全不同。在裸銅上形成的SEI層是高度結(jié)晶的,主要有Li2CO3晶體(晶格間距為),但也有Li2O(晶格間距為)和LiF(晶格間距為)晶體...
采用充放電測試和交流阻抗測試研究了硝酸鋰作電解液添加劑對(duì)鋰硫電池電化學(xué)性能的影響。采用電子掃描顯微鏡觀察分析了添加劑對(duì)鋰負(fù)極的影響,探討了硝酸鋰的作用機(jī)理。結(jié)果表明,采用硝酸鋰作為鋰硫電池電解液的添加劑,可以在鋰負(fù)極表面形成具有鈍化負(fù)極活性表面及保護(hù)鋰負(fù)極的界面膜。該膜可以抑制電解液中高價(jià)態(tài)聚硫離子與鋰負(fù)極的副反應(yīng),避免在鋰負(fù)極表面形成不可逆的硫化鋰,從而提高鋰硫電池的循環(huán)性能和放電容量。采用硝酸鋰作添加劑的鋰硫電池***放電比容量達(dá)1172mA.h/g,循環(huán)100次比容量保持為629mA:h/g。康奈爾大學(xué)LyndenArcher團(tuán)隊(duì)以“Designingelectrolyteswithpo...
該藍(lán)色溶液的出現(xiàn),是因?yàn)楫a(chǎn)生了可溶解的銅離子絡(luò)合物。眾所周知,硝酸鋰(LiNO3)是鋰硫電池穩(wěn)定金屬鋰負(fù)極的關(guān)鍵電解液成分,其可以通過與金屬鋰發(fā)生化學(xué)或電化學(xué)反應(yīng)形成Li2O、Li3N和LiNxOy等物質(zhì)來改善金屬鋰負(fù)極表面SEI膜的性質(zhì)。而這些物質(zhì),特別是不溶性的LiNxOy,可以鈍化金屬鋰負(fù)極并阻止電子從金屬鋰轉(zhuǎn)移到電解液中,從而有效地抑制金屬鋰負(fù)極與多硫化物/電解液之間的副反應(yīng)。但是,有研究表明,在鋰氧氣電池體系中,LiNO3衍生的SEI膜組分中的NO2–物種可以溶解到電解液中并與O2通過一系列復(fù)雜的反應(yīng)重新生成NO3–物種。該過程會(huì)破壞SEI膜結(jié)構(gòu),導(dǎo)致新的活性鋰物種反復(fù)暴露于電解液中...
進(jìn)而提升鋰負(fù)極的循環(huán)穩(wěn)定性。正極添加劑主要為一些含B或者P的有機(jī)物,可在高壓下優(yōu)先分解進(jìn)而減緩電解液氧化和正極材料的破壞。電解液中引入不同種類的添加劑可能會(huì)使界面反應(yīng)復(fù)雜化同時(shí)也可能會(huì)對(duì)另一電極引入不良影響。電解液溶劑化是影響鋰離子在電解質(zhì)中的擴(kuò)散,正負(fù)極與電解液SEI的形成以及Li離子在電極表電解液面嵌入和脫嵌的重要因素。清華大學(xué)的張強(qiáng)教授團(tuán)隊(duì)下的陳翔博士通過密度泛函理論計(jì)算研究了離子-溶劑,離子-離子和溶劑-溶劑之間的相互作用。溶劑化效應(yīng)可以***降低上述三種相互作用。通過將硝酸鋰溶解在不同溶劑中,進(jìn)一步探索了Li鹽在電解質(zhì)中的溶解行為并進(jìn)行了實(shí)驗(yàn)驗(yàn)證。這項(xiàng)工作提供了對(duì)微觀溶劑化作用的理論...
該系統(tǒng)產(chǎn)生堅(jiān)固的外部Li2O固體電解質(zhì)界面和含氟、硼的共形正極電解質(zhì)界面。由此產(chǎn)生的穩(wěn)定的離子傳輸動(dòng)力學(xué)使得Li/LiNi0.8Mn0.1Co0.1O2在高挑戰(zhàn)性條件下(電池水平為295.1Whkg-1)循環(huán)140次,保留80%的容量。對(duì)于4.6VLiCoO2(160次循環(huán),容量保持率89.8%)正極和4.95VLiNi0.5Mn1.5O4正極,該電解質(zhì)還表現(xiàn)出高循環(huán)穩(wěn)定性。將金屬鋰負(fù)極與高壓氧化物正極結(jié)合構(gòu)建高電壓鋰金屬電池有助于實(shí)現(xiàn)全電池的高能量密度。由于高壓過渡金屬氧化物(如鈷酸鋰、鎳錳酸鋰)的高嵌/脫鋰電位和鋰負(fù)極的高活性,使其在有機(jī)電解液中穩(wěn)定性較差。通過改變電解液的組分對(duì)其正負(fù)極界...
具體地說,雙(氟磺酰亞胺)鋰(LiFSi)和硝酸鋰(LiNO3)溶解在由碳酸氟乙烯(FEC)和四乙二醇二甲醚(TEGDME)組成的混合溶劑中,構(gòu)成耐高溫(ET)電解質(zhì)。將其應(yīng)用于90°C工作的Li|LiFePO4電池,鋰金屬負(fù)極在耐ET電解液中循環(huán)100次,容量保持率為91.5%。而鋰金屬負(fù)極在實(shí)際的常規(guī)電解液(EC/DEC中為1.0MLiPF6)中*在10個(gè)循環(huán)內(nèi)就迅速失效。基于耐ET電解質(zhì)作為合理的研究平臺(tái),研究人員揭示了90°C時(shí)SEI和Li沉積的***特征。在90℃時(shí),鋰鹽和溶劑的**分解和不完全分解均增強(qiáng),從而改變了25℃時(shí)SEI的形成機(jī)制,導(dǎo)致Li均勻性的沉積。鋰金屬電池由于其**...
共同通訊作者)等人在AngewandteChemieInternationalEdition上發(fā)文,題為:“High-TemperatureFormationofAFunctionalFilmatTheCathode/ElectrolyteInterfacesinLithium--SulfurBatteries:AnInSituAFMStudy”。研究人員探究了在高溫條件下鋰硫電池在LiFSI基電解液中的界面行為與反應(yīng)機(jī)制。通過電化學(xué)原子力顯微成像方法,研究人員在充放電過程中原位研究了不溶性Li2S2和Li2S在納米尺度下的動(dòng)態(tài)演化規(guī)律。研究發(fā)現(xiàn),在高溫60℃時(shí),正極/電解液界面在放電過程中會(huì)...
然后于300~400℃下灼燒,冷卻后即得高純品。5、35%的氫氟酸和粉狀碳酸鋰,反應(yīng)到pH=3,可用四氟罐進(jìn)行反應(yīng)。6、由Li2CO3(碳酸鋰)和氫氟酸反應(yīng),在鉑皿或鉛皿中蒸發(fā)至干而制得。氟化鋰是一種無機(jī)鹽,化學(xué)式為LiF,分子量為,堿金屬鹵化物。氟化鋰的疏水參數(shù)計(jì)算參考值(XlogP):無;2、氫鍵供體數(shù)量:0;3、氫鍵受體數(shù)量:1;4、可旋轉(zhuǎn)化學(xué)鍵數(shù)量:0;5、互變異構(gòu)體數(shù)量:無;6、拓?fù)浞肿訕O性表面積:0;7、重原子數(shù)量:2;8、表面電荷:0;9、復(fù)雜度:2;10、同位素原子數(shù)量:0;11、確定原子立構(gòu)中心數(shù)量:0;12、不確定原子立構(gòu)中心數(shù)量:0;13、確定化學(xué)鍵立構(gòu)中心數(shù)量:0;14...
SEI)隨著充放電次數(shù)的增加而變厚,這將降低電池的循環(huán)穩(wěn)定性。所制備的人工固態(tài)電解質(zhì)膜(a-SEI)可改善鋰離子電池的循環(huán)穩(wěn)定性,其主要成分為使用液相法制備的氟化鋰(LiF)、氮化亞銅(Cu3N)納米顆粒。通過兩種不同路徑,將兩種納米顆粒先后在鋰離子電池正極三元材料(NCM811)電極片表面和活性材料顆粒表面涂覆生成一層a-SEI。使用掃描電子顯微鏡(SEM)、X射線衍射儀(XRD)、電化學(xué)阻抗譜(EIS)等材料表征和電化學(xué)分析方法,解析a-SEI對(duì)鋰離子電池循環(huán)穩(wěn)定性的影響。結(jié)果表明,NCM811材料表面包覆Cu3N作為a-SEI的電化學(xué)性能比較好,相比純NCM811材料,50周循環(huán)后的容量...
應(yīng)用慢掃描循環(huán)伏安法研究磷酸鐵鋰化合物在水溶液體系中的電極過程,并通過交流阻抗法探討了其在不同電位條件下的脫嵌鋰過程。對(duì)不同頻率區(qū)域的電化學(xué)行為進(jìn)行分析表明,高頻圓弧歸屬于體相電阻和電容;中低頻區(qū)的半圓反映了Li+在電解液和活性物質(zhì)界面發(fā)生的電荷轉(zhuǎn)移;低頻區(qū)部分的斜線說明了鋰離子在電極材料內(nèi)部的擴(kuò)散行為。提出了等效電路模型,并以此對(duì)實(shí)驗(yàn)結(jié)果進(jìn)行了擬合。在此基礎(chǔ)上分析了磷酸鐵鋰在飽和硝酸鋰溶液中的電極反應(yīng)機(jī)理。醋酸鋰法和電轉(zhuǎn)化法的轉(zhuǎn)化效果。北京無水氯化鋰報(bào)價(jià)表以LiF包覆的石墨為基體,有效改變了鋰金屬的生長方式,使其成為無枝晶的大晶粒,表面光滑,結(jié)構(gòu)致密。因此,MCMB-F2負(fù)極在用作鋰金屬負(fù)極...
同時(shí)由于無污染、不含鉛、鎘等重金屬,被稱為綠色新能源產(chǎn)品。鋰電池在中長期內(nèi)仍將是動(dòng)力、消費(fèi)電子和儲(chǔ)能應(yīng)用的比較好選擇。隨著新能源汽車在全球范圍內(nèi)爆發(fā)性增長以及隨著支持政策持續(xù)推動(dòng)、技術(shù)進(jìn)步、消費(fèi)者習(xí)慣改變、配套設(shè)施普及等產(chǎn)業(yè)化進(jìn)程因素的影響不斷深入,新能源汽車對(duì)動(dòng)力鋰電池的需求成為推動(dòng)鋰離子電池行業(yè)高速增長的主要?jiǎng)恿ΑH騽?dòng)力電池規(guī)模已經(jīng)成為消費(fèi)電子、動(dòng)力和儲(chǔ)能三大領(lǐng)域中增量比較大的板塊。基于消費(fèi)電子產(chǎn)品制造技術(shù)的迭代發(fā)展以及移動(dòng)互聯(lián)網(wǎng)應(yīng)用的普及,以智能手機(jī)、平板和筆記本電腦為**的全球移動(dòng)設(shè)備和以智能可穿戴設(shè)備、智能出行、智能家居設(shè)備、電子霧化器為**的新興智能硬件產(chǎn)品市場規(guī)模快速增長,3C...
研究表明,磷酸鐵鋰在水溶液體系中具有良好的電化學(xué)可逆性。利用量子化學(xué)計(jì)算方法,在HF/6-31+G*水平下對(duì)硝酸鋰溶液中可能存在的離子締合物種,以及當(dāng)濃度升高時(shí)溶液中發(fā)生的離子締合過程進(jìn)行了研究。硝酸根與水合鋰離子可形成溶劑共享離子對(duì)、接觸離子對(duì)、三離子及多離子團(tuán)簇等離子締臺(tái)物種,在所有的締合物種中,鋰離子大都以形成四配位四面體結(jié)構(gòu)為主,只有少數(shù)情況下存在能量較高的五配位結(jié)構(gòu)。以上3種水合離子締合物種中的v1(NO3-)頻率與水合硝酸根中的參比值相比,分別發(fā)生1.4,-6.9以及大于2.8cm-1的藍(lán)移,考慮到實(shí)驗(yàn)光譜中v1(NO3-)帶是持續(xù)藍(lán)移的。推測的硝酸鋰溶液在濃度升高時(shí)發(fā)生離子締合的...
美國賓夕法尼亞州立大學(xué)和阿貢國家實(shí)驗(yàn)室的一組研究人員**近研發(fā)了一種新型鋰金屬電池設(shè)計(jì),可以克服上述缺點(diǎn)。研究人員發(fā)現(xiàn),與之前研發(fā)鋰電池相比,新電池在低溫下的表現(xiàn)非常好。**開始,研究人員在低溫下仔細(xì)檢查了鋰金屬電池,以便更好地了解影響其性能的因素。他們觀察到,氣溫在零下15攝氏度時(shí),電池的SEI(來源于傳統(tǒng)電解質(zhì))會(huì)結(jié)晶度很高且不均勻,從而極大地限制了氟化鋰納米鹽等被動(dòng)SEI成分的形成,導(dǎo)致表面鈍化不良、鋰腐蝕以及陽極上生長樹突。在室溫下,添加其它層保護(hù)陽極、利用替代性電解質(zhì)或引入鋰主電極可以防止此類影響。但是在低溫下,控制SEI納米結(jié)構(gòu)則更具挑戰(zhàn)性,會(huì)導(dǎo)致電池運(yùn)行不穩(wěn)定。因此,研究人員設(shè)計(jì)...
其中中國產(chǎn)能為21700噸,全球市場規(guī)模超過30億元。目前,六氟磷酸鋰主要通過氟化氫法來制備。在這一生產(chǎn)工藝中,使用氫氟酸為氟化試劑,將五氯化磷氟化,生成的五氟化磷再與氟化鋰反應(yīng),合成六氟磷酸鋰。這種方法是成熟的工藝路線,但卻有著較嚴(yán)重的環(huán)境與安全問題:首先,氟化氫作為有毒、高腐蝕的試劑,對(duì)環(huán)境與操作人員危害較大,使用時(shí)有較高的安全風(fēng)險(xiǎn);其次,該工藝副產(chǎn)氯化氫,亦是一種腐蝕性物質(zhì),較難處理。利用骨架材料與溶劑分子之間的極性相互作用,可在復(fù)合鋰負(fù)極內(nèi)部鋰表面提供穩(wěn)定且均勻的SEI。ELPAN的氰基官能團(tuán)和FEC的羰基官能團(tuán)之間有很強(qiáng)的偶極-偶極相互作用。因此,F(xiàn)EC分子傾向于在ELPAN附近富集...
以LiF包覆的石墨為基體,有效改變了鋰金屬的生長方式,使其成為無枝晶的大晶粒,表面光滑,結(jié)構(gòu)致密。因此,MCMB-F2負(fù)極在用作鋰金屬負(fù)極時(shí),比較大限度地減少了電解液的消耗和Li的損耗。25次循環(huán)內(nèi)的高鋰電鍍/剝離CE達(dá)到。這種無枝晶鋰金屬負(fù)極具有很高的可逆性。SEI的性質(zhì)與非質(zhì)子電解質(zhì)中鋰金屬的表面狀態(tài)密切相關(guān)。避免樹枝狀晶體生長的關(guān)鍵是通過改變電解質(zhì)配方等途徑構(gòu)建堅(jiān)固的SEI。**近,研究人員致力于通過使用氟化溶劑和高濃度鋰鹽,調(diào)控SEI的組成和結(jié)構(gòu)。研究者發(fā)現(xiàn)SEI中的LiF可以抑制樹枝狀Li的生長。作為優(yōu)良的電子絕緣體,LiF可以阻止電子隧穿,從而防止電解質(zhì)大量分解。此外,LiF具有較...
醚類電解液中,當(dāng)存在硝酸鋰的情況下金屬鋰沉積的庫倫效率可以高達(dá)98.5%。而酯類電解液中,金屬鋰沉積的效率*有70%左右。這表明醚類電解液中所形成的SEI膜是優(yōu)異且穩(wěn)定的SEI膜,而酯類電解液中的SEI膜則不穩(wěn)定容易破裂。因此,大多數(shù)金屬鋰沉積的研究都是在醚類電解液中進(jìn)行的。但是,醚類電解液的電壓窗口往往般都低于4V。因此,醚類電解液中所配的金屬鋰全電池都是對(duì)磷酸鐵鋰(LFP)或者鈦酸鋰(LTO)正極。而這樣的金屬鋰全電池的能量密度甚至不如傳統(tǒng)的鋰離子電池。通過醋酸鋰法轉(zhuǎn)入酵母宿主HIS-/GS115細(xì)胞中,然后在含不同濃度G418的YPD平板上篩選陽性克隆。山東雙三氟甲磺酰亞胺鋰報(bào)價(jià)表氯離子...
其中中國產(chǎn)能為21700噸,全球市場規(guī)模超過30億元。目前,六氟磷酸鋰主要通過氟化氫法來制備。在這一生產(chǎn)工藝中,使用氫氟酸為氟化試劑,將五氯化磷氟化,生成的五氟化磷再與氟化鋰反應(yīng),合成六氟磷酸鋰。這種方法是成熟的工藝路線,但卻有著較嚴(yán)重的環(huán)境與安全問題:首先,氟化氫作為有毒、高腐蝕的試劑,對(duì)環(huán)境與操作人員危害較大,使用時(shí)有較高的安全風(fēng)險(xiǎn);其次,該工藝副產(chǎn)氯化氫,亦是一種腐蝕性物質(zhì),較難處理。利用骨架材料與溶劑分子之間的極性相互作用,可在復(fù)合鋰負(fù)極內(nèi)部鋰表面提供穩(wěn)定且均勻的SEI。ELPAN的氰基官能團(tuán)和FEC的羰基官能團(tuán)之間有很強(qiáng)的偶極-偶極相互作用。因此,F(xiàn)EC分子傾向于在ELPAN附近富集...
同時(shí)由于無污染、不含鉛、鎘等重金屬,被稱為綠色新能源產(chǎn)品。鋰電池在中長期內(nèi)仍將是動(dòng)力、消費(fèi)電子和儲(chǔ)能應(yīng)用的比較好選擇。隨著新能源汽車在全球范圍內(nèi)爆發(fā)性增長以及隨著支持政策持續(xù)推動(dòng)、技術(shù)進(jìn)步、消費(fèi)者習(xí)慣改變、配套設(shè)施普及等產(chǎn)業(yè)化進(jìn)程因素的影響不斷深入,新能源汽車對(duì)動(dòng)力鋰電池的需求成為推動(dòng)鋰離子電池行業(yè)高速增長的主要?jiǎng)恿ΑH騽?dòng)力電池規(guī)模已經(jīng)成為消費(fèi)電子、動(dòng)力和儲(chǔ)能三大領(lǐng)域中增量比較大的板塊。基于消費(fèi)電子產(chǎn)品制造技術(shù)的迭代發(fā)展以及移動(dòng)互聯(lián)網(wǎng)應(yīng)用的普及,以智能手機(jī)、平板和筆記本電腦為**的全球移動(dòng)設(shè)備和以智能可穿戴設(shè)備、智能出行、智能家居設(shè)備、電子霧化器為**的新興智能硬件產(chǎn)品市場規(guī)模快速增長,3C...
中國在此領(lǐng)域一直處于**地位。2011年,中國就批準(zhǔn)了在甘肅省武威市建設(shè)一個(gè)釷熔鹽反應(yīng)堆的計(jì)劃,并要求中國科學(xué)家開發(fā)運(yùn)行該反應(yīng)堆的技術(shù)。據(jù)悉,這個(gè)兩兆瓦的原型反應(yīng)堆將于下個(gè)月竣工,***次測試**早可能在9月份開始。假如進(jìn)展順利,會(huì)在2030年建置***座商用反應(yīng)爐,目標(biāo)是在中國中部或西部沙漠和平原建設(shè)多個(gè)釷熔鹽反應(yīng)爐,也打算應(yīng)用于****。據(jù)了解,氟化鋰在增殖反應(yīng)堆中作載體,也用作中子屏蔽材料,在熔鹽反應(yīng)堆中用作溶劑。由于核反應(yīng)堆能夠在發(fā)電的同時(shí)產(chǎn)生極低的碳排放,因此在可持續(xù)的能源生產(chǎn)方面具有明顯的優(yōu)勢。但是,這項(xiàng)技術(shù)沒有在世界范圍內(nèi)得到***采用有著顯而易見的原因,其中許多原因都源于對(duì)鈾和...
黃佳琦研究員課題組通過引入微量的氟化銅(0.2wt%),**終實(shí)現(xiàn)了1.0wt%硝酸鋰添加劑的溶解,整個(gè)溶液的顏色變化明顯:單獨(dú)的硝酸鋰和單獨(dú)的氟化銅試劑在酯類電解液中均無法溶解;當(dāng)兩者共同加入溶液后,沉淀完全消失,并且呈現(xiàn)藍(lán)色。該藍(lán)色溶液的出現(xiàn),是因?yàn)楫a(chǎn)生了可溶解的銅離子絡(luò)合物。硝酸鋰(LiNO3)作為鋰硫電池電解液的添加劑,在抑制多硫化物的“穿梭效應(yīng)”和保護(hù)金屬鋰負(fù)極上發(fā)揮了重要作用。鋰硫電池電解液體系多為醚類體系,而醚類體系因其窄的電化學(xué)窗口無法使用到高壓電池中(>4.3V),酯類電解液體系能夠承受4.3V及以上電壓。黃佳琦研究員課題組通過引入微量的氟化銅(0.2wt%),**終實(shí)現(xiàn)了1...
利用硼酸與鋰表面的氧化物或氫氧化物形成O-B-O或B-O-B共價(jià)鍵結(jié)構(gòu)的特性,在鋰表面原位生長一層致密結(jié)構(gòu)的SEI膜,該SEI膜主要由硼酸鋰,氟化鋰和碳酸鋰等納米顆粒分布于無定型的有機(jī)膜中構(gòu)成,具有一定的隔水性和導(dǎo)離子性;此外,透射電鏡觀察可看出該SEI膜能夠以自支撐的形式存在于碳纖維的表面,具有一定的機(jī)械性能。所得SEI膜應(yīng)用于鋰的對(duì)稱電池中,能夠穩(wěn)定循環(huán)200多圈(0.25mA/cm2的電流密度,0.5mAh/cm2的容量)。用于鋰氧氣電池時(shí),循環(huán)壽命是使用普通電解液電池的6倍左右。一個(gè)可充電的鋰金屬負(fù)極與一個(gè)高電壓正極相結(jié)合,是一種實(shí)現(xiàn)高能量密度電池的有效途徑。浙江大學(xué)陸盈盈研究員課題組...