富鎳正極材料在高電壓(>)和高溫(>50℃)下循環過程中發生結構坍塌導致二次顆粒連續產生微裂縫。這些微裂縫斷開一次顆粒之間的電通路,在相轉變過程中釋放氧氣,導致電化學性能變差。JaephilCho教授課題組通過對一次顆粒進行納米表面修飾來克服富鎳正極材料的上述問題,經過處理的一次顆粒表面復含鈷,通過***從分層結構到巖石鹽結構的變化來緩解微裂紋產生。而且,表面高氧化態的Mn4+在高溫下能夠降低氧氣的釋放,改善結構穩定性與熱穩定性。SangKyuKwark等人提出一種提高鋰電池正極穩定性的方法,先采用經典的煅燒方法制備出NCA材料,然后將NCA浸入到醋酸鋰和醋酸鈷的混合溶液中,進一步攪拌、蒸干、煅燒得到改進的正極材料。有趣的是該方法制備的NCA顆粒之間填充著一層尖晶石構型的鈷酸鋰晶體Glue-layer(G-layer),能夠將NCA顆粒緊密的連接在一起,起到膠水的作用。可以提高顆粒之間的機械強度,保護活性粒子不穩定的表面,從而增強電極的穩定性。 化學物相分析法測定鋰輝石的焙燒轉化率——β鋰輝石中Li_2O的測定醋酸鈉熔融法。山東回收無水醋酸鋰
industryTemplate黑龍江制作無水醋酸鋰酵母的無水醋酸鋰轉化法。
經電感耦合等離子體光發射光譜分析測試(ICP-OES),LTO納米顆粒中Li和Ti的原子比例分別為4.64%和46.30%,即原子摩爾比為Li/Ti=0.692,表明這是一種缺鋰富鈦型LTO。XPS表征結果表明Ti 2p峰分布在458.7 eV和464.4 eV兩處,說明該LTO中只有四價鈦并不存在三價鈦。另外,鈦元素主要暴露在LTO納米顆粒表面,這主要是合成過程中有氧缺陷的存在造成的。顆粒表面Ti/O比一般的LTO低,而更類似于TiO2這樣一種組成。作者采用扣式電池體系Li/Li+/LTO(活性物質負載量1mg/cm2),在1.3-2.5V的電壓范圍內測試了LTO的電化學性能。
隔膜[4],報道了一種可有效防止鋰電池過熱起火的新技術,他們想在情況不可收拾之前關閉電池,通過在鋰電池中增加一個熱敏高分子聚合物薄膜“開關”材料,當電池溫度過高就會迅速切斷電池內電路,使之降溫;當溫度降至正常,該聚合物薄膜又能恢復正常狀態,讓電池重新工作。他們將具有石墨烯涂層的鎳鈉米粒子嵌入聚乙烯材料中,制備出一種輕薄又具有柔性的導電塑料薄,用這種聚合物膜組裝成的鋰電池,在正常的工作溫度下,電流很容易通過薄膜,電池可以正常充電和放電,但是當電池的溫度升高到70℃時,聚乙烯開始膨脹,推動鎳納米粒子彼此分開,這樣隔膜的導電性在短短的1s之內就會降低1000億倍,電池中的電荷移動停止,從而使電池的溫度下降。而且,當溫度低于這種聚合物70℃時,該聚合物可以很容易的恢復到原來的構型,導電性也恢復正常,恢復電池功能。 醋酸鋰用于飽和與不飽和脂肪酸的分離,有機反應催化劑。
Prof. Yingjie Zhu和Xianluo Hu合作[3],采用羥基磷灰石超長納米線、科琴黑納米顆粒,碳纖維和磷酸鐵鋰粉末作為原料,通過簡單的靜電輔助自組裝的方法成功的制備了一種既可以耐高溫、又具有活性物質高負載量的新型磷酸鐵鋰復合電極(UCFR-LFP),可以作為鋰電池正極(圖1)。在自組裝和抽濾的過程中,磷酸鐵鋰納米顆粒均勻得分散在高導電性且多孔的羥基磷灰石超長納米線/科琴黑納米顆粒/碳纖維基底中,從而形成自支撐、具有獨特復合多孔結構的磷酸鐵鋰耐高溫正極材料,其具有優異的熱穩定性和耐火性,即使在1000℃的高溫下也能保持其電化學活性和結構完整性。醋酸鋰和10 mM DTT混合液,由于其提高效果有倍增作用,所以能夠**提高外源基因的轉化效率。江西鋰電池無水醋酸鋰
無水醋酸鋰的英文名稱。山東回收無水醋酸鋰
近日,中國科學院金屬研究所李峰課題組等人采用三氟乙酸鋰(CF3CO2Li,LiTFA)作為電解液體系的鋰鹽。該鋰鹽含有羰基(C=O)官能團,確保能與電解液中的鋰離子發生較強的溶劑化作用。同時,其含有的-CF3官能團可以大幅度降低鋰鹽的LUMO能級(-2.26 eV),在電解液/鋰負極界面分解生成富含LiF與Li2O的SEI膜。基于此, Li@Cu半電池在1 M-LiTFA-DME/FEC電解液體系中以平均98.8%的庫倫效率穩定循環超過500圈。此外,該電解液擁有超過4.3V的電化學穩定窗口,在與有限的金屬鋰組成的全電池中,實現Li||LFP和Li||NCM622全電池穩定循環超過100圈。山東回收無水醋酸鋰