近幾年,伴隨著鋰離子電池的快速發展,鋰離子電池所需電解液的需求量也在迅速增加。為了滿足鋰離子電池產業未來發展的需要,必須開發出高安全性、高環境適應性的動力電池電解液材料。雖然目前liPF6(六氟磷酸鋰鹽)被公認為是較為理想的鋰離子電池電解液,但LiPF6合成工...
馬克斯·普朗克研究所JosepCornella等報道了Bi催化中的芳基硼酸和全氟烷基磺酸鹽之間的交叉偶聯反應,該反應通過BiIII/BiV催化循環進行反應,該反應中關鍵點在于缺電子的砜配體作用,實現了通過市售NaOTf/KOTf作為反應物構建C(sp2...
傳統電解液采用熱不穩定的六氟磷酸鋰(LiPF6)為主要導電鋰鹽,溶于極易燃碳酸酯,如碳酸丙烯酯(PC)、碳酸乙烯酯(EC)、碳酸二甲酯(DMC)、碳酸乙酯(EMC)、碳酸二乙酯(DEC)等。在LIBs的熱失控過程中,有許多鏈式反應釋放熱量,電解液在決定鋰離子電...
鋰空氣電池是新型綠色能源技術,由于電池陰極來源于空氣中的氧氣,不需要存儲于電池中,因而被譽為"會呼吸的電池"。該體系在能量密度方面有杰出的表現,已成為相當有潛力的發展方向之一。目前,該方向的研究著重于提升電池比容量,二次電池的開發以及電池的放電機理三個方面。雖...
近幾年,伴隨著鋰離子電池的快速發展,鋰離子電池所需電解液的需求量也在迅速增加。為了滿足鋰離子電池產業未來發展的需要,必須開發出高安全性、高環境適應性的動力電池電解液材料。雖然目前liPF6(六氟磷酸鋰鹽)被公認為是較為理想的鋰離子電池電解液,但LiPF6合成工...
一種能改善鋰錳電池低溫性能的有機電解液,其中的鋰鹽主鹽為高氯酸鋰,輔鹽選自六氟磷酸鋰,四氟硼酸鋰,三氟甲基磺酸鋰,雙草酸硼酸鋰,雙(三氟甲基磺酰)亞胺鋰,雙(氟磺酰)亞胺鋰,二氟草酸硼酸鋰,無水碘化鋰;所述的有機溶劑為環狀酯類,線性酯類,醚類,砜類的混合溶劑;...
CF3SO3Li(三氟甲磺酸鋰)在熱穩定性、吸水分解性、循環性能等方面都高于LiPF6,尤其是CF3SO3li應用于固體電解質時,由于其穩定的陰離子會使電解質和陰極材料界面間的鈍化層結構和組成得到改善,有利于電解質、鈍化膜和電機的穩定。因此,CF3SO3Li的...
中國科學院金屬研究所李峰研究員和孫振華研究員等,將原位固化的策略引入到鋰硫電池中,在電解液中加入2, 5-二氯-1, 4-苯醌(DCBQ),使得鋰硫電池電化學反應過程中生成的多硫離子可以與DCBQ發生親核取代反應,原位地生成不易溶于醚類電解液的固相有機硫聚合物...
雙(三氟甲磺酰)亞胺鋰,通常簡稱為LiTFSI,是一種親水鹽,化學式為LiC2F6NO4S2。它是鋰離子電池電解質中常用的鋰離子源,是一種比常用的六氟磷酸鋰更安全的替代品。因為它在水中有很高的溶解度(>21m),LiTFSI已被用作水-鹽電解質中的鋰鹽,...
雙(三氟甲磺酰)亞胺鋰,通常簡稱為LiTFSI,是一種親水鹽,化學式為LiC2F6NO4S2。它是鋰離子電池電解質中常用的鋰離子源,是一種比常用的六氟磷酸鋰更安全的替代品。因為它在水中有很高的溶解度(>21m),LiTFSI已被用作水-鹽電解質中的鋰鹽,...
一般而言,電解液中有機溶劑和溶質容易分析并模仿,但添加劑成分通常很難分析出來。可以說,添加劑的成分是電解液企業的技術**所在。常見的添加劑分類包括SEI(改善石墨負極表面的固體電解質界面膜性能)成膜添加劑、抗過充添加劑、阻燃添加劑、穩定添加劑、浸潤添加劑、除酸...
華南理工大學Min Zhu、Renzong Hu團隊,以“Constructing Li‐Rich Artificial SEI Layer in Alloy‐Polymer Composite Electrolyte to Achieve High Ioni...
原子納米公司李華平博士團隊的研究人員,基于半導體電化學摻雜的機理,研制開發出新型電解質調控的OLED有機發光二極管。該器件由下至上以透明導電玻璃ITO為陽極,PEDOT:PSS為空穴傳輸層,超級黃色聚合物(SY, 聚對亞苯基亞乙烯基的衍生物)為有機發光層,多孔...
一般而言,電解液中有機溶劑和溶質容易分析并模仿,但添加劑成分通常很難分析出來。可以說,添加劑的成分是電解液企業的技術**所在。常見的添加劑分類包括SEI(改善石墨負極表面的固體電解質界面膜性能)成膜添加劑、抗過充添加劑、阻燃添加劑、穩定添加劑、浸潤添加劑、除酸...
離子液體由陰、陽離子兩部分組成, 陰離子通常有、、TFSI-、FSI-等,陽離子通常有吡咯類、咪唑類、哌啶類和季銨鹽類等。離子液體具有揮發性極小、不燃、電化學穩定窗口寬、溶解能力強、熱穩定性高等特點,既適合應用于高電壓電解液,又適合制備阻燃型電解液,提高鋰離子...
雙三氟甲烷磺酰亞胺鋰為白色結晶或粉末,可用作鋰離子電池有機電解質鋰鹽,具有較高的電化學穩定性和電導率。用途:雙三氟甲基磺酰亞胺鋰可用于制備鋰電池的電解質以及新型稀土路易斯酸催化劑;用于通過對應的三氟甲基磺酸鹽的陰離子置換反應制備手性咪唑鎓鹽。本品是重要的含氟有...
固體聚合物電解質是上世紀70年代提出的一類新型電解質材料,可用于二次鋰離子電池,因其具有安全,環保等優點而在國際上受到***關注。遺憾的是,,全固態聚合物電解質室溫下的離子電導率(10-8S·cm-1)非常低,達不到應用水平。上世紀90年代,科學家們發現基于低...
麻省理工學院發現電解質陰離子基團效應可將鋰離子電池交換電流密度提升百倍據先進能源科技戰略情報研究中心9月2日消息,麻省理工學院Yet-MingChiang教授研究團隊發現電解質陰離子基團效應可將鋰離子電池交換電流密度提升百倍。團隊首先通過濕化學方法制備了鋰鈷氧...
雙(三氟甲磺酰)亞胺鋰,通常簡稱為LiTFSI,是一種親水鹽,化學式為LiC2F6NO4S2。它是鋰離子電池電解質中常用的鋰離子源,是一種比常用的六氟磷酸鋰更安全的替代品。因為它在水中有很高的溶解度(>21m),LiTFSI已被用作水-鹽電解質中的鋰鹽,...
采用***性原理計算(DFT)與實驗相結合的方法,比較研究了雙三氟甲烷磺酰亞胺鋰-二草酸硼酸鋰(LiTFSI-LiBOB)、雙三氟甲烷磺酰亞胺-二氟草酸硼酸鋰(LiTFSI-LiDFOB)、雙氟磺酰亞胺鋰-二草酸硼酸鋰(LiFSI-LiBOB)、雙氟磺酰亞胺鋰...
電化學分析以其靈敏度高和便捷準確而成為分析檢測領域的研究熱點之一。本論文制備了還原氧化石墨烯修飾的玻碳電極、平面參比電極和納米普魯士藍、氧化石墨烯及雙三氟甲烷磺酰亞胺鋰修飾的絲網印刷電極。采用交流阻抗法及微分脈沖伏安法對不同氧化程度的植物油進行了測量并與國標比...
在高濃度電解液環境中,電極/電解液界面膜組成主要源于鋰鹽陰離子的氧化或還原分解,生成氟化鋰(LiF),而富含LiF的界面膜相對穩定,從而可以有效減少界面發生的副反應。如在石墨負極表面,少許溶劑還原后形成不溶性的SEI組分,如Li2CO3和部分可溶的半碳酸鹽和聚...
導電劑與粘結劑的種類與數量也影響著電池的熱穩定性,粘結劑與鋰在高溫下反應產生大量的熱,不同粘結劑發熱量不同 , PVDF 的發熱量幾乎是無氟粘結劑的2倍 ,用無氟粘結劑代替PVDF可以提高電池的熱穩定性。Jigang Zhou等人**近還通過將復雜復合電極熱失...
目前商業上**成功的鋰鹽是LiPF6,因為它均衡了各項性能,如良好的解離度、溶解性、離子電導率以及能夠鈍化鋁箔等。但它在痕量水存在的情況下會與水反應生成HF侵蝕正極,此外它在80 ℃即發生分解。LiPF6較差的化學穩定性和熱穩定性限制了其在高電壓三元鋰離子電池...
作者采用扣式電池體系Li/Li+/LTO(活性物質負載量1mg/cm2),在1.3-2.5V的電壓范圍內測試了LTO的電化學性能。50C倍率充放電條件下,LTO的容量剛開始較低,隨著循環次數的增加,容量快速上升,1000次循環后,容量穩定在170mAh/g左右...
富鎳正極材料在高電壓(>)和高溫(>50℃)下循環過程中發生結構坍塌導致二次顆粒連續產生微裂縫。這些微裂縫斷開一次顆粒之間的電通路,在相轉變過程中釋放氧氣,導致電化學性能變差。JaephilCho教授課題組通過對一次顆粒進行納米表面修飾來克服富鎳正...
醋酸鋰:研究做到這些熱失控將不再是鋰電池安全的不治之癥!當前引發鋰電池熱失控的因素多種多樣,總結起來主要有過熱、過充、內短路、碰撞等引起的發熱失控。如何提高電池的安全性,把熱失控的風險降至比較低成為人們研究的重中之重。對于單電池來說,其安全性除了與正極材料相關...
鋰離子電池由于其較高的電化學容量和工作電壓以及環境友好等優勢,成為了目前社會生活與工業應用中炙手可熱的儲能器件,在可移動電子設備、電動汽車和智能電網等領域廣泛應用[1]。目前主流的鋰離子電池正極材料有磷酸鐵鋰、錳酸鋰和層狀三元材料[2-3],但是,這些正極材料...
在當今能源制約、環境污染等大背景下,國家提出發展新能源作為改善環境、節約成本的重要舉措。其中,電動汽車**近成為熱點,越來越多的人選擇電動汽車,不僅因為其用車成本低,而且電動汽車在使用過程中不會產生廢氣,和傳統汽車相比不存在大氣污染的問題。然而電動...
馬克斯·普朗克研究所JosepCornella等報道了Bi催化中的芳基硼酸和全氟烷基磺酸鹽之間的交叉偶聯反應,該反應通過BiIII/BiV催化循環進行反應,該反應中關鍵點在于缺電子的砜配體作用,實現了通過市售NaOTf/KOTf作為反應物構建C(sp2...