類金剛石碳膜(diamond-likecarbonfilms,簡稱DLC膜),是含有類似金剛石結構的非晶碳膜,也是我們在這里真正需要介紹的一種。DLC膜的基本成分是碳,由于其碳的來源和制備方法的差異,DLC膜可分為含氫和不含氫兩大類。DLC膜是一種亞穩態長程無序的非晶材料,碳原子間的鍵合方式是共價鍵,主要包含sp2和sp3兩種雜化鍵,在含氫DLC膜中還存在一定數量的C-H鍵。我們從1996年起開始磁過濾真空弧及沉積DLC膜研究,正在完善工業化技術。如等離子體源沉積法、離子束源沉積法、孿生中頻磁控濺射法、真空陰極電弧沉積法和脈沖高壓放點等。類金剛石涂層的可控制備及其性能。無錫滾齒刀類金剛石哪家便...
20世紀70年代早期,類金剛石(DLC)涂層才見諸報道。工業上應用這種涂層起源于汽車部件,如高壓柴油噴射系統和動力傳動部件。當今,具有特殊優勢的各種DLC涂層已在一些領域得到應用。DLC涂層通常由sp3與sp2鍵的比值和氫含量來分類。當碳元素通過sp3鍵結合,就會形成金剛石;通過sp2鍵結合,就會形成石墨。當sp3與sp2鍵的比值增大時,涂層的硬度通常會增加??稍贒LC涂層內加入鎢(W-C∶H)之類的金屬(此處C為碳,H為氫);還可以加入其他元素如硅(Si-DLC)來改變涂層的摩擦系數或抗溫性能。一種已用于切削刀具的復合涂層為高硬度的氮化物涂層(如TiAlN)加上較軟的、具有潤滑功能的頂層涂層...
傳統硬質合金刀具銑削碳纖維復合材料(CFRP)時磨損嚴重,需在其上沉積金剛石薄膜涂層.在相同的硬質合金立銑刀基體上,改變沉積工藝,獲得3種分別覆有粗晶、細晶和復合晶等不同CVD金剛石薄膜的刀具.用掃描電鏡觀察分析3種涂層的表面形貌.在相同條件下,用3種刀具切削CFRP并分析其刀具磨損機理.結果表明:復合晶工藝的金剛石涂層硬質合金立銑刀耐磨性比較好、使用壽命較長,約為粗晶金剛石涂層銑刀的、細晶金剛石涂層銑刀的膜層硬度高膜層摩擦系數低小于結合力好耐腐蝕性能好優異的耐磨性膜層具有自潤滑性的優點??梢越鉀QPVD涂層鍍不到的工件內孔的問題。公司涂層已經應用于航空機械模具電子醫療汽車發動機部件等領域。類金...
固體潤滑薄膜材料具有優異的摩擦學性能,可以有效降低相對運動摩擦副之間的摩擦磨損,是汽車節能減排技術的重要研究方向.對固體潤滑薄膜尤其是DLC薄膜的摩擦學性能進行了介紹,研究了其在高壓柴油噴射系統和發動機挺柱等零部件上的應用.臺架試驗結果表明,DLC薄膜可以有效降低發動機挺柱和柱塞等零部件表面的摩擦系數,減少供油和配氣系統的摩擦損失,從而提高發動機的燃油經濟性.上海英屹涂層技術有限公司引進美國PE-CVD設備技術制備的類金剛石DLC膜層沉積速率快膜厚可達60um膜層硬度高膜層摩擦系數低小于結合力好耐腐蝕性能好優異的耐磨性膜層具有自潤滑性的優點??梢越鉀QPVD涂層鍍不到的工件內孔的問題。公司涂層已...
類金剛石薄膜(DLC)是1種非晶薄膜,可分為無氫類金剛石碳膜(a-C)和氫化類金剛石碳膜(a-C:H)(圖2)兩類。無氫類金剛石碳膜有a-C膜(主要由sp3和sp2鍵碳原子相互混雜的三維網絡構成),以及四面體非晶碳(tetrahedralcarbon,簡稱ta-C)(主要由超過80%的sp3鍵碳原子為骨架構成);氫化類金剛石碳膜(a-C:H)又可分為類聚合物非晶態碳(polymer-likecarbon,簡稱PLC)、類金剛石碳、類石墨碳3種,其三維網絡結構中同時還結合一定數量的氫.類聚合物非晶態碳是含氫金剛石薄膜的一種它是非晶體又有類似于聚合物那種通過相同簡單的結構單元通過共價鍵重復連接而成...
物相沉積是在真空狀態下,將被沉積元素變成原子進相沉積。用于制備類金剛石薄膜的物相沉積法包括經典的離子束沉積法(通過等離子體濺射石墨靶產生碳離子,經電磁場的加速作用沉積在基體表面)、新興的直流磁控濺射技術(電子在磁場的作用下將Ar原子變成Ar離子,轟擊石墨靶面,濺射出的碳原子在基體表面形成膜)、射頻濺射技術(電子在射頻振蕩的作用下將Ar原子變成Ar離子,轟擊石墨靶面,濺射出的碳原子在基體表面形成膜)以及脈沖激光沉積法(在真空條件下,利用脈沖激光束使石墨靶釋放碳離子,在基體表面沉積成膜)。化學氣相沉積是在熱能、光能或等離子體等各種能源的作用下,通過發生化學反應,使蒸汽狀態的化學物質形成固態沉積物。...
20世紀70年代早期,類金剛石(DLC)涂層才見諸報道。工業上應用這種涂層起源于汽車部件,如高壓柴油噴射系統和動力傳動部件。當今,具有特殊優勢的各種DLC涂層已在一些領域得到應用。DLC涂層通常由sp3與sp2鍵的比值和氫含量來分類。當碳元素通過sp3鍵結合,就會形成金剛石;通過sp2鍵結合,就會形成石墨。當sp3與sp2鍵的比值增大時,涂層的硬度通常會增加??稍贒LC涂層內加入鎢(W-C∶H)之類的金屬(此處C為碳,H為氫);還可以加入其他元素如硅(Si-DLC)來改變涂層的摩擦系數或抗溫性能。一種已用于切削刀具的復合涂層為高硬度的氮化物涂層(如TiAlN)加上較軟的、具有潤滑功能的頂層涂層...
類金剛石膜的結構,綜述了類金剛石膜的傳統制備方法以及其制備方法的基本原理和優缺點,同時介紹了幾種近年發展起來的新興制備方法,與傳統制備方法相比,它更能提高膜的沉積速率和質量.總結了類金剛石膜在機械、電子、光學、醫學、航空等領域的應用狀況.同時指出,隨著DLC技術上的成熟,其必將在更多領域發揮越來越大的作用.上海英屹涂層技術有限公司引進美國PE-CVD設備技術制備的類金剛石DLC膜層沉積速率快膜厚可達60um膜層硬度高膜層摩擦系數低小于結合力好耐腐蝕性能好優異的耐磨性膜層具有自潤滑性的優點??梢越鉀QPVD涂層鍍不到的工件內孔的問題。公司涂層已經應用于航空機械模具電子醫療汽車發動機部件等領域。DL...
使用類金剛石薄膜(DiamondLikeCarbon,DLC)作為涂層,采用等離子體離子浸沒注入技術)對空間飛輪長壽命軸承溝道表面進行改性.結果表明,陪試件表面DLC改性后表面粗糙度、軸承內外溝道輪廓形狀誤差等特性未發生明顯改變,改性層表面納米硬度提高2倍左右;陪試件摩擦試驗結果表明,改性后表面的摩擦學性能得到了明顯改善;DLC涂層的穩定摩擦因數為基體的1/3~1/4,有利于延長空間飛輪軸承的工作壽命.上海英屹涂層技術有限公司引進美國PE-CVD設備技術制備的類金剛石DLC膜層沉積速率快膜厚可達60um膜層硬度高膜層摩擦系數低小于結合力好耐腐蝕性能好優異的耐磨性膜層具有自潤滑性的優點??梢越鉀Q...
在一臺yBHИПA-1型雙激發源等離子弧薄膜沉積裝置上制取Ti合金化DLC膜,用納米硬度計、顯微硬度計、原子力顯微鏡以及X射線衍射儀和光電子能譜儀等手段對薄膜的力學性能和結構進行了分析和測定.摩擦磨損試驗在一臺球-盤滑動磨損試驗機上進行.比較了不同鈦合金化程度的DLC膜及熱處理前后的性能變化.結果表明,薄膜的力學性能與Ti含量有非單值關系,但摩擦系數隨Ti含量增加而升高;熱處理后薄膜顯微硬度有名升高的原因是生成了碳化鈦硬化相.上海英屹涂層技術有限公司引進美國PE-CVD設備技術制備的類金剛石DLC膜層沉積速率快膜厚可達60um膜層硬度高膜層摩擦系數低小于結合力好耐腐蝕性能好優異的耐磨性膜層具有...
有數種方法來生產類金剛石碳,但都是基于, sp雜化鍵比sp雜化鍵小很多的事實。因此原子尺度上壓力、沖擊、催化或者是幾種方法的組合的應用可以迫使sp雜化碳原子結合在一起形成sp鍵合。這些作用必須足夠強使得這些原子能夠偏離sp鍵合的特性,而不能像彈簧一樣變形回來。一般的技術,要有一種足夠的壓力,要么能夠使sp雜化碳原子團簇深入到涂層內,使得沒有足夠的空間讓sp雜化擴張回來,要么這些新的團簇就很快被下一輪新到來的碳所埋。可以把這個過程想象成為下冰雹一樣的一種更局部化、更快、更加納米的熱壓結合條件來生產天然和合成的金剛石。由于它們單獨的的發生在生長薄膜或涂層表面的許多地方,它們傾向于形成類似于鵝卵石街...
隨著技術及航空航天技術的發展,紅外技術越來越受到人們的重視,在及航天領域有著舉足輕重的作用。紅外光學元件的工作環境往往非常惡劣,如空-空導彈、超音速飛機等裝備光電系統的紅外窗口,需要承受灰塵、高溫、高壓、雨淋、冰雹撞擊、熱沖擊等嚴峻考驗,因此對紅外窗口材料的性能要求越來越苛刻,既要求材料在工作波段具有優良的光學性能,還要求材料具有優良的力學、耐磨損、耐高溫、耐腐蝕等性能。常作為紅外窗口的材料有鍺(Ge)、硫化鋅(ZnS)、硒化鋅(ZnSe)、砷化鎵(GaAs)、氟化鎂(MgF2)、藍寶石(sapphire)、尖晶石等,但這些材料在應用中都存在著一些問題,例如,Ge在高溫時透過率下降;GaAs制...
使用類金剛石薄膜(DiamondLikeCarbon,DLC)作為涂層,采用等離子體離子浸沒注入技術)對空間飛輪長壽命軸承溝道表面進行改性.結果表明,陪試件表面DLC改性后表面粗糙度、軸承內外溝道輪廓形狀誤差等特性未發生明顯改變,改性層表面納米硬度提高2倍左右;陪試件摩擦試驗結果表明,改性后表面的摩擦學性能得到了明顯改善;DLC涂層的穩定摩擦因數為基體的1/3~1/4,有利于延長空間飛輪軸承的工作壽命.上海英屹涂層技術有限公司引進美國PE-CVD設備技術制備的類金剛石DLC膜層沉積速率快膜厚可達60um膜層硬度高膜層摩擦系數低小于結合力好耐腐蝕性能好優異的耐磨性膜層具有自潤滑性的優點??梢越鉀Q...
通常把一系列含有sp3和sp2雜化的不穩定的非晶碳膜統稱為類金剛石薄膜(DLC),這類薄膜具有高的硬度,低的摩擦因數,優異的耐磨性,良好的光學透過性和生物相容性,是近年來引起重視的一種新型功能薄膜材料。膜基結合力強弱是決定涂層壽命的關鍵因素,也是決定所有涂層應用價值的較基礎因素。DLC涂層結合強度不高,通過納米調制等手段來提高其結合力。其中硼摻雜類金剛石涂層的研究主要集中在電化學和生物相容性方面,首先采用射頻磁控濺射法在不同基底材料上制備了類金剛石涂層,分析了基底材料對涂層結構及膜基結合力的影響,通過原子力顯微鏡、掃描電鏡、拉曼光譜結果表明:射頻磁控濺射和閉合場非平衡磁控濺射制備的類金剛石涂層...
DLC薄膜制備技術的研究開始于七十年代。1971年Aisenberg和Chabot成功地利用碳離子束沉積出DLC薄膜以來,離子束沉積法(Ionbeamdeposition)是開始用于制備DLC膜。其后研究者發現了一系列生成DLC薄膜的辦法。Maissel等在《薄膜工藝手冊》一書中指出,大多數能夠在氣相中沉積的薄膜材料也能在液相中通過電化學方法合成,反之亦然。給DLC薄膜的制備帶來了新的思路,現在除了常見的化學氣相沉積(CVD)和物相沉積(PVD),也可以通過液相的電化學沉積來制備DLC膜。因此通常在兩個電極之間施加很高的電壓,即利用強電場使溶液中的C-H、C-O和O-H等鍵發生斷裂生成碳碎片,...
20世紀70年代早期,類金剛石(DLC)涂層才見諸報道。工業上應用這種涂層起源于汽車部件,如高壓柴油噴射系統和動力傳動部件。當今,具有特殊優勢的各種DLC涂層已在一些領域得到應用。DLC涂層通常由sp3與sp2鍵的比值和氫含量來分類。當碳元素通過sp3鍵結合,就會形成金剛石;通過sp2鍵結合,就會形成石墨。當sp3與sp2鍵的比值增大時,涂層的硬度通常會增加??稍贒LC涂層內加入鎢(W-C∶H)之類的金屬(此處C為碳,H為氫);還可以加入其他元素如硅(Si-DLC)來改變涂層的摩擦系數或抗溫性能。一種已用于切削刀具的復合涂層為高硬度的氮化物涂層(如TiAlN)加上較軟的、具有潤滑功能的頂層涂層...
CVD、PVD等技術的出現,是切削工具領域中的一次重大的**。它的出現立即引起了機械制造領域的巨大反響,理想的切削工具應當是既有硬的表面,又有高的韌性,涂層技術便達到了這個目標。 較早的涂層材料都是陶瓷性質的物質,如TiN、TiC、Al2O3等,近年來,涂層技術又有了很大的發展。超硬材料涂層正在得到多面應用,許多產品相繼出現在市場上,但國內尚處在實驗階段,預計也會很快突破,超硬材料涂層的發展,使整個現有的切削工具的性能都明顯得到了提高,面對當前大量涌現的難加工材料,這些新發展的涂層技術將有巨大的適應能力,前景相當喜人。類金剛石薄膜的微觀結構與其物理特性。松江區銑刀類金剛石涂層廠 類金...
自上世紀80年代以來,類金剛石膜作為新型的膜材料一直是世界各國膜技術領域研究的熱點之一。我國在類金剛石膜的研究方面取得了一定的進展,但與發達國家相比,還是有一定的差距。類金剛石膜的種類很多,其結構、工藝及機理極為復雜,主要是由于DLC是在非平衡態和等離子體狀態下制備合成的,存在著許多爭議尚未解決的問題。這些問題至今仍嚴重制約著類金剛石膜的研究進展。如高溫穩定性問題,DLC在溫度大于400℃時性能將明顯變差;內應力問題,DLC中存在很大的內應力,它降低了類金剛石膜與基體的結合強度,使膜層容易起皺、脫落,阻礙了類金剛石膜的工業應用;同時,不同工藝制備的類金剛石膜的結構和性能差異很大。這些問題都將是...
炸裂法合成的金剛石微粉隨著工業技術的進步,越來越要求超高精密度的尺寸公差,例如加工工業用的藍寶石、鐵氧體或陶瓷元件、定形金剛石制品,多相金相試樣以及特硬金屬零件等。實踐證明,采用炸裂法合成的金剛石微粉可獲得很好的技術經濟效果。這種金剛石微粉的特點是多晶體顆粒,從顯微結構和外觀上說類似黑金剛石(Carbonado),這一種稀有的天然聚晶金剛石,由于含微量元素而呈黑色,具有很高的硬度。炸裂法合成的金剛石微粉是用高能危險品受控炸裂法合成的。目前國際上已開始進入工業規模生產。類金剛石薄膜的種類及其應用。青浦區塑膠模類金剛石哪家便宜隨著技術及航空航天技術的發展,紅外技術越來越受到人們的重視,在及航天領域...
類金剛石涂層是一種在微觀結構上含有金剛石成分的涂層。構成類金剛石的元素為碳。碳原子和碳原子之間的不同結合方式,使其終產生的物質也不同,如在金剛石中碳原子與碳原子之間是以sp3鍵的形式結合的,在石墨中碳原子與碳原子之間是以sp2鍵的形式結合的,而在類金剛石中碳原子與碳原子之間則是以sp3和sp2鍵的形式結合的。類金剛石涂層由于含有金剛石成分,具有硬度高(能達到-60GPa或Hv6000以上);摩擦系數低();膜層致密性極好;化學穩定性好以及光學性能好等很多優良的性能。因此,類金剛石涂層作為一種理想的涂層材料廣泛應用于硬質合金刀具,成為現代機械加工業的新生力量。類金剛石薄膜的問世始于20世紀70年...
類金剛石在DLC薄膜在汽車發動機領域的應用。為了降低發動機的燃油消耗,減輕發動機滑動部位的摩擦,(特別是活塞、活塞環與氣缸之間以及凸輪與從動件之間的摩擦)非常重要。DLC薄膜材料作為一種高硬度減摩抗磨表面保護薄膜材料,具有優異的耐磨性能、低摩擦特性以及與發動機潤滑油良好的協同復配特性,它在發動機滑動摩擦副上的應用是發動機節能降耗表面處理技術的一個重要研究方向。DLC薄膜在發動機上的應用效果,在技術上DLC薄膜將極低的摩擦阻力和極高的硬度完美地結合在一起,該技術已被初步應用于汽車零部件的各個運動系統中。什么是類金剛石涂層?浦東新區納米類金剛石哪家便宜采用激光Roman光譜儀研究了DLC的結構組成...
在眾多類型的碳材料中,類金剛石薄膜(diamond-likecarbon,DLC)因其優異的性能吸引了世界范圍內的關注和研究。DLC薄膜的結構處于金剛石和石墨結構之間的,主要是由金剛石結構的sp3雜化碳原子和石墨結構的sp2雜化碳原子混雜在一起形成的復雜三維網絡結構構成[27]。根據晶體材料的特征分析,DLC薄膜通常呈現非晶態或非晶納米晶復合結構。根據氫的有無可以分為含氫DLC薄膜(a-C:H)和不含氫DLC薄膜(a-C)。根據不同的含氫量和sp3與sp2雜化鍵的比例又分為不同的細類,如圖1-1所示。在2005年德國工程師學會定制的“碳涂層”標準中,又可將DLC薄膜細分為不同的七大類[27]。...
隨著現代科學技術的不斷進步,普通硬質涂層和超硬涂層有了明顯的發展,部分涂層已經在某些領域實現了應用。主要介紹了氮化物、碳化物、氧化物、硼化物等普通硬質涂層和金剛石、類金剛石(DLC)、cBN、納米多層結構涂層及納米復合涂層等超硬涂層的性能、應用、制備技術及其發展趨勢,并對部分常見涂層面臨的性能改進及其今后可能的發展方向進行了探討。上海英屹涂層技術有限公司引進美國PE-CVD設備技術制備的類金剛石DLC膜層沉積速率快膜厚可達60um膜層硬度高膜層摩擦系數低小于結合力好耐腐蝕性能好優異的耐磨性膜層具有自潤滑性的優點??梢越鉀QPVD涂層鍍不到的工件內孔的問題。公司涂層已經應用于航空機械模具電子醫療汽...
采用高功率脈沖磁控濺射技術制備DLC膜層,研究了偏壓的變化對膜層結構及主要力學性能的影響.利用掃描電鏡、原子力顯微鏡、拉曼光譜儀、X射線光電子能譜儀、納米壓入儀、劃痕儀和磨擦磨損試驗儀分析檢測了DLC膜結構與性能.結果表明:偏壓的提高,有利于改善DLC膜的表面光潔度及致密性,DLC膜表面均方根粗糙度Rq由不施加偏壓時的9nm降低至偏壓為-350V的7nm;致密性的提高使沉積速率略有下降,膜層厚度減小.偏壓的增加,DLC膜內部sp3含量先增加后減小趨勢,在偏壓為-250V時,DLC膜中sp3含量比較高.偏壓的增大,DLC膜的硬度、楊氏模量和摩擦磨損等主要力學性能均呈先增大后減小的趨勢,并在偏壓為...
在眾多類型的碳材料中,類金剛石薄膜(diamond-likecarbon,DLC)因其優異的性能吸引了世界范圍內的關注和研究。DLC薄膜的結構處于金剛石和石墨結構之間的,主要是由金剛石結構的sp3雜化碳原子和石墨結構的sp2雜化碳原子混雜在一起形成的復雜三維網絡結構構成[27]。根據晶體材料的特征分析,DLC薄膜通常呈現非晶態或非晶納米晶復合結構。根據氫的有無可以分為含氫DLC薄膜(a-C:H)和不含氫DLC薄膜(a-C)。根據不同的含氫量和sp3與sp2雜化鍵的比例又分為不同的細類,如圖1-1所示。在2005年德國工程師學會定制的“碳涂層”標準中,又可將DLC薄膜細分為不同的七大類[27]。...
多數實驗研究表明:DLC在大氣環境下可以表現出低的摩擦系數,如果制備工藝恰當,其摩擦因數比較低可達,且類金剛石膜具有良好的自潤滑特性,所以人們可較好的將其使用在高真空、高溫等不適于液體潤滑的情況以同時又有清潔要求的環境中,如航天航空領域。上個世紀70年代末前蘇聯將DLC技術應用于宇航儀表中的動壓氣浮軸承,成功研制出高精度且**磨損型陀螺動壓馬達。1990年歐洲空間中心摩擦實驗室在評價了空間使用的各種固體材料之后,明確指出今后太空空間的固體材料涂層應該是以金剛石膜和類金剛石膜為主。通過分析比較,他們認為DLC是適合未來的太空空間潤滑摩擦表面的涂層。研究還發現,類金剛石膜在超高真空中的磨損更為緩和...
經過對類金剛石涂層制備過程的分析發現,當基體表面薄膜的厚度大于或等于1um時,薄膜會發生脫落,這與膜體-基底之間熱膨脹系數不匹配有關。因此,如何改善膜基結合力,提高薄膜穩定性引起業內人士關注。薄膜與基體之間結合力的大小與沉積方法及沉積工藝參數有關,因此選擇合適的沉積壓力、偏壓等參數,有助于提高膜體與基體之間的結合力,并延長類金剛石膜層的使用時間。改善基體狀態當基體表面存在缺陷時,會影響膜與基體之間的結合,對此可以利用超聲波、金剛石研磨等機械方法來清洗刀具基體,表面污染物及氧化物;另外,采用化學酸蝕方法,能夠去除刀具基體表面的鈷,并能粗化基體,增加膜基接觸面積,提高膜基結合力。添加過渡層膜基之間...
利用ECR-PECVD技術在等離子體活化后的UHMWPE表面成功制備出一種含氫DLC薄膜。UHMWPE經等離子體活化提高了其表面能和表面粗糙度,增強了與DLC間的膜基結合強度。DLC薄膜的沉積,進一步提高了UHMWPE的表面硬度、表面抗擦傷能力和耐磨損能力。⑹UHMWPE表面金屬過渡層的引入,提高了DLC薄膜的沉積速率和薄膜中sp3鍵的含量,進一步提高了UHMWPE的耐磨損性能⑺本文采用的“低溫等離子體活化/強化預處理+DLC薄膜沉積”的雙重表面改性技術對提高UHMWPE的耐磨性來說將起到雙重保障作用。將該技術應用于UHMWPE人工關節臼的表面改性具有潛在的重要應用價值。上海英屹涂層技術有限公...
經過對類金剛石涂層制備過程的分析發現,當基體表面薄膜的厚度大于或等于1um時,薄膜會發生脫落,這與膜體-基底之間熱膨脹系數不匹配有關。因此,如何改善膜基結合力,提高薄膜穩定性引起業內人士關注。薄膜與基體之間結合力的大小與沉積方法及沉積工藝參數有關,因此選擇合適的沉積壓力、偏壓等參數,有助于提高膜體與基體之間的結合力,并延長類金剛石膜層的使用時間。改善基體狀態當基體表面存在缺陷時,會影響膜與基體之間的結合,對此可以利用超聲波、金剛石研磨等機械方法來清洗刀具基體,表面污染物及氧化物;另外,采用化學酸蝕方法,能夠去除刀具基體表面的鈷,并能粗化基體,增加膜基接觸面積,提高膜基結合力。添加過渡層膜基之間...
金剛石鉸刀的磨損原理比較復雜,主要有宏觀磨損和微觀磨損,前者主要是機械磨損,后者主要是熱化學磨損。金剛石鉸刀常見的磨損形式有前刀面磨損、后刀面磨損和刀刃破裂。單晶金剛石鉸刀在刃磨時,既要有磨耗,也要有刃磨出符合要求的刀具,但是如果產生不必要的磨耗,則可損傷已被刃磨好的前后刀面。當刃口應力大于金剛石鉸刀的局部承受能力時,就會產生刃口崩裂(即崩裂),這通常是由于金剛石晶體沿晶表面的微觀解理破壞所致。金剛石鉸刀的切削刃鈍圓半徑在超精密加工中相對較小,其自身又屬于硬脆材料,同時由于其切面各向異性容易發生解理,常因振動和砂輪砂粒對刃口的沖擊而伴隨崩刃現象。淺談DLC薄膜在生活上面的運用。松江納米類金剛石...